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ABSTRACT
Internet-enabled, location aware smart phones with sensor inputs
have led to novel applications exploiting unprecedented high levels
of citizen participation in dense metropolitan areas. Especially the
possibility to make oneself heard on issues, such as broken traffic
lights, potholes or garbage, has led to a high degree of participation
in Urban Infrastructure Monitoring. However, citizens often re-
peatedly report duplicates instead of complementing information,
leading to bottlenecks in manual processing by municipal author-
ities. Spatio-temporal clustering can serve as an essential tool to
group and rank similar (e.g., duplicate) reports. Current data min-
ing techniques could be used by municipal departments to manually
process the most representative reports, but the mandatory param-
eter selection can be unintuitive, time consuming and error-prone.
In this work, we therefore present a novel framework for cluster-
ing spatio-temporal data. We first apply an intuitive transforma-
tion of the data into a graph and subsequently use well-established
graph clustering techniques to detect similar reports. We evaluate
our method on two real-world data-sets from different mobile is-
sue tracking platforms. As one of these datasets includes labels for
duplicate reports, we can show how our framework outperforms ex-
isting techniques in our examplary use-case (duplicate detection).
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1. INTRODUCTION
Participatory Sensing [3] has enabled a multitude of novel ap-

plications in recent years, ranging from collaborative noise pol-
lution maps [29] over cyclist experience reports [23] to automat-
ically characterizing places [4]. The crowdsourced gathering of
content is becoming easier and faster as mobile and pervasive tech-
nology continues to spread. Instead of merely being a data collec-
tion paradigm, Participatory Sensing presents a powerful tool for
harnessing civic engagement. Through geocentric crowdsourcing
[7], administrative bodies and policy makers can utilize collabo-
ratively collected data to gather information on various phenom-
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ena of interest, such as public infrastructure issues in urban spaces.
Many different platforms for crowdsourced, mobile Participatory
Infrastructure Monitoring or Civic Issue Reporting have emerged
in the last years and enable citizens to make themselves heard and
let them actively shape and connect to the urban spaces they live in:
FixMyStreet [15] (UK), SeeClickFix [18], CitySourced (both in the
US), Fix-o-Gram [10] (Australia), Unortkataster Köln [31], KA-
Feedback [6] (both Germany) or Nericell [19] (India) are just some
examples.

Citizens have a strong intrinsic motivation to enhance their living
environment. As argued by FENNEL [9], crowdsourcing systems
paradoxically may be negatively affected by a high degree of par-
ticipation. Issue reporting will only be useful if the flow of records
does not exceed the receiving entity’s capacity to process or re-
spond to reports. However, an increased data flow is often caused
by submitted records being substitutes rather than complements:

• The same citizen may repeatedly report the same issue to em-
phasize the perceived urgency of an issue.

• Different users may see and report the same issue at different
times and/or categorize the issue differently.

We confirmed that the frequent occurrence of duplicate reports
is in fact an actual problem in the underlying real-word systems
by gettin in contact with both the operator of a large platform,
SeeClickFix1, as well as the government partner of a small one:
KA-Feedback2, in the City of Karlsruhe, Germany. SeeClickFix
currently does not have any mechanism that allows their govern-
ment partners to handle similar reports in the system. However,
they have emphasized the necessity of such a function to be imple-
mented in the future. The municipal government of Karlsruhe also
reported receiving multiple reports for unique infrastructure issues.
A surprising revelation was that the current strategy for duplicate
handling by case officers in Karlsruhe is keeping a mental record
of the already processed reports. If this fails, they stated that the
duplication is eventually detected by the maintenance crew that is
sent out to fix the issue. Needless to say, this approach does not
scale.

Employing intelligent (ideally real-time) data processing in gen-
eral and spatio-temporal clustering in particular for grouping simi-
lar and possible duplicate reports has large potential:

• Similar report detection and aggregation: By automatically
finding and grouping reports that are likely to describe the
same unique issue, data processing entities can significantly
speed up issue handling and better allocate their resources.

1http://www.seeclickfix.com
2http://www.ka-feedback.de
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Figure 1: Spatial plot showing the SeeClickFix Chicago reports
colored by distinct report category.

• Implicit prioritization: The size of the clusters discovered by
data analytics can reveal infrastructure problems which are re-
ported by many distinct users. This information can be ex-
ploited to prioritize the processing of certain specific issues.

In this paper, we present and evaluate a novel framework for
clustering spatio-temporal data, based on initial transformation of
the data into a graph structure and subsequent clustering of the
graph. Figure 1 shows a spatial plot for a SeeClickFix dataset of the
City of Chicago, illustrating the high spatial density of the reports.
Performing clustering on the graph structure discards the need of
setting unintuitive density parameters, as dense substructures can
be directly discovered in the graph structure with traditional param-
eter free graph clustering approaches. We additionally compare the
performance of our framework to contemporary spatio-temporal
clustering methods and present a supervised approach for duplicate
classification. It serves as a base for spatio-temporal knowledge
discovery which can possibly help municipal government depart-
ments to easily and quickly rank and process groups of similar and
even duplicate reports instead of each report individually.

2. RELATED WORK
In the field of spatio-temporal analytics, clustering methods have

been distinguished by whether the analyzed data consists of events
or trajectories and moving points [16]. In the Participatory Infras-
tructure Monitoring scenarios described above, we focus on ana-
lyzing reports, i.e., events. Spatio-temporal event analysis has been
employed for a wide range of applications to better understand im-
portant aspects of urban phenomena. H. SILVA ET. AL. have ana-
lyzed data from Instagram and Foursquare to analyze user’s move-
ment patterns and popular regions in a city [28, 27]. HASAN ET.
AL. researched temporal and spatial aspects of the mobility and
activity patterns in a city using twitter data [14]. However, to the
best of our knowledge, applying spatio-temporal clustering for pri-
oritizing the treatment of infrastructure reports by grouping similar
and potentially duplicate reports is still an unexplored application.

Regarding current data mining techniques for spatio-temporal

clustering, a well-established approach for spatial clustering is DB-
SCAN [8]. It clusters circular regions in which the density of an
event is higher than outside within a certain (spatial) radius, but
it only considers spatial events. Density based methods in general
have various strong points over traditional spatial clustering like the
traditional k-means, which requires knowing the number of clusters
in the data a priori. DBSCAN needs no a priori assumption about
the number of clusters, it can find arbitrarily shaped clusters and
can perform well even in the presence of outliers. Based on DB-
SCAN, some algorithms have been proposed in order to separately
identify spatial clusters and temporal clusters, and then combin-
ing the results in order to provide spatio-temporal clusters. Some
examples are ST-DBSCAN [1] and ST-GRID [33]. ST-DBSCAN
is an extension of DBSCAN with an additional threshold for the
temporal dimension. ST-GRID is based on partitioning of the spa-
tial and temporal dimensions into cells and defining dense cells as
clusters. Adjacent dense cells get merged into a single cluster rep-
resentation. Both algorithms suggest using the k-dist-graph pro-
posed in [8] as a heuristic for determination of the spatio-temporal
input parameters. They also have in common the requirement of
a density threshold minPts, suggested to be set as ln(n) on the
number of data points in the database. However, the main problem
of these density based approaches is that they cannot cluster data
sets well with large differences in densities, since the combination
of minPts and the spatio-temporal thresholds cannot be chosen
appropriately for all clusters [21]. Recent publications have ad-
dressed these drawbacks of density based clustering [17, 22]. These
strategies however do not consider the temporal issue for the clus-
tering.

Rather than relying on the definition of different density thresh-
olds, we propose a novel approach based on modeling first the
spatio-temporal data in form of a neighborhood connectivity graph.
In a later step, dense structural subgraphs forming the spatio-temporal
clusters are detected with parameter-free graph partitioning algo-
rithms based on the structure of the modeled graph. We thus addi-
tionally overcome the known drawback of density based approaches
of merging adjacent clusters which are connected by a very narrow
dense link, as this is detected directly in the graph structure.

3. SPATIO-TEMPORAL ANALYTICS
In this work, we propose a generic approach that can be applied

to the problem of grouping spatio-temporal close reports. We first
describe the preliminary considerations that we undertook in the
formation of our methods. Subsequently, the clustering framework
is presented.

3.1 Preliminary Considerations
In order to develop our analyses, we define several terms and

formal relations that we use to describe the spatio-temporal rela-
tionships. The data records we analyze are the notifications on in-
frastructure issues that residents of a city submit. These reports
are by nature spatio-temporal observations, i.e. they have both a
temporal and a spatial dimension (reporting time and location of
the issue) and an issue description. Throughout this work we use
the term user or citizen to describe a person who creates a report.
The receiving entities that are responsible for processing, respond-
ing and reacting to the submitted reports are called case officers or
civil servants.

Our main assumption is, for two reports to be similar and poten-
tially describe the same infrastructure issue, they must be spatio-
temporally neighbored. Two reports x and y (x 6= y) are consid-
ered to be spatio-temporal equivalent (ST-equivalent) or spatio-
temporally neighbored, if for a temporal threshold (∆t) and a spa-
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tial distance (D) the following conditions are fulfilled:

|L(x)− L(y)| < D

|t(x)− t(y)| < ∆t

The location of an observation x reported at time t(x) is denoted
as L(x). Two reports x and y are therefore spatio-temporal equiva-
lents, if for report x, submitted at time t, another report y is submit-
ted within the timeframe ∆t, and y lies within the spatial distance
D from x. The spatio-temporal equivalence is by definition sym-
metric. If x is a spatio-temporal equivalent of y, reciprocally y is
a spatio-temporal equivalent of x. In this sense, there is no notion
of an original report. Naturally, there is a temporal order in which
the reports are submitted, but it is not part of our model.

The spatio-temporal equivalence relation can be modeled and
visualized as a graph, in which the vertexes represent the reports
and which has an edge connecting two reports if they are spatio-
temporally neighbored. We call this undirected and unconnected
graph representation of the reports and their spatio-temporal re-
lation the spatio-temporal graph (ST-Graph). In this graph, the
spatial-temporal neighborhood is defined by linkage relationships
between the objects.

On a set of reports R, we define the spatio-temporal neighbour-
hood Nst(x) ⊆ R of a report x as the subset of reports fromR that
are spatio-temporal equivalents of x (not including x itself):

Nst(x) := {y ∈ R |x, y are ST-equivalent}

From these two definitions it is clear that if for a report x to be
similar to another report and even represent a possible duplicate,
its spatio-temporal neighborhood is not empty and there must exist
at least one edge connecting x to another report in the ST-Graph:

|Nst(x)| > 0⇔ Degree(x) > 0 in ST-Graph

The spatio-temporal equivalence relation is not transitive, i.e. if x
and y are ST-equivalent and y and z are ST-equivalent, that does not
necessarily mean that x and z are as well. In order to reflect such
an indirect connection between records, we introduce the notion of
spatio-temporal connectivity:

A report x is spatio-temporally connected (ST-connected) to an-
other report y, if there is a chain of reports r0, ..., rn, such that
r0 = x and rn = y and all ri, ri+1 are pairwise spatio-temporal
equivalent:

x, y ST-connected :⇔∃ r0, ..., rn | ri, ri+1 ST-equivalent,
r0 = x, rn = y,

(with i ∈ {0, ..., n− 1}, n ∈ N>0)

In the ST-Graph, if a path exists between two vertexes, these two
are ST-connected.

Finally, we define a Spatio-Temporal Cluster CST as a non-
empty subset of the set of reports R, where all reports in CST are
spatio-temporally connected, fulfilling following condition (Maxi-
mality):

∀x, y ∈ R : x ∈ CST ∧ x is ST-connected to y → y ∈ CST

The spatio-temporal clusters are connected components in the
ST-Graph.

Using these preliminary considerations, the problem of finding
and aggregating similar reports can now be reduced to the problem
of constructing the ST-Graph with adequate parameters and per-
forming graph clustering on its top.

3.2 Spatio-Temporal Clustering Framework
Using the spatio-temporal relationships introduced above, we

developed a two-step framework for clustering spatio-temporal data
(see Figure 2). In a first step (Data Modeling), we detect spatio-
temporal equivalent reports given by spatial and temporal thresh-
olds and some optional semantic constraints, forming the ST-Graph.
In a second step (Graph Clustering), we apply graph clustering al-
gorithms to detect and extract densely connected subgroups based
on the structural similarity of the nodes in the ST-Graph. Spatio-
temporal clusters are then extracted from the connected compo-
nents of the graph and individual graph objects are defined as out-
liers. Some reports that were clustered in the first step may be
removed from its cluster in this step.

Data 
Modeling

Graph
ClusteringST-GraphReports Results

First Step (Modeling) Second Step (Refinements)

Figure 2: Two-step framework for clustering spatio-temporal
data. In a first step, spatio-temporal proximity is modeled with
the use of links between nodes. In a second refinement step,
densely connected spatio-temporal clusters are partitioned.

3.2.1 Step 1: Data Modeling
The step of modeling the data into a graph structure is done by

generating the ST-Graph with all reports as nodes linked to their
respective spatio-temporal equivalent reports.

In the framework depicted in Algorithm 1, R represents the set
of the reports to be analyzed and the STGraph is the resulting
unconnected and undirected graph after the data modeling. We in-
troduce an optional parameter set Constraints as input to the al-
gorithm which allows specifying additional (non-spatio-temporal)
conditions that should be included. This can contain arbitrary other
relationships between reports, such as report category and user IDs
of the submitting citizens. In the evaluation experiments of this
work we have specified the additional constraint of building clus-
ters only between reports of the same category (e.g. potholes, graf-
fiti removal, etc.). In future work we aim to exploit text similarity
metrics in the report descriptions instead, like the Leventhstein dis-
tance for example.

This first step of the framework is parameterized, i.e. the thresh-
olds for the spatial and temporal distance (D,∆t) need to be pre-
defined. The choice of these parameters can have a great influence
on the clustering performance. The discussion section of this work
contains considerations regarding how some of the constraints and
the spatio-temporal parameters can influence the end result. The
output of the first step of the framework may produce cluster rep-
resentations consisting of subgraphs which are densely connected
within themselves but sparsely connected in between. This phe-
nomenon occurs more often in scenarios in which a high amount
of (spatio-temporal dense) data is collected, and less frequent in
cases where the data is spatio-temporal sparse. Consequently, fur-
ther refinements steps become useful. In the following, we propose
a refinement step that works on the base of the ST-Graph.

3.2.2 Step 2: Graph Clustering
The aim of the second step is to detect densely connected sub-

groups and reach a partitioning of the clusters in the ST-Graph,
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so that the resulting clusters are more meaningful. Densely con-
nected subgraphs stand for clusters with high intra-cluster simi-
larity. This is based on the assumption that clusters containing
similar and potentially duplicate reports have highly dense con-
nected vertexes and that dense subgraphs that are bridged by single
connecting vertexes should be partitioned, i.e., connections within
graph clusters should be dense, and the connections between differ-
ent graph clusters should be sparse. The output (ST-Graph) of the
first step of the algorithm already builds the clusters by retrieving
the connected components (subgraphs) of the generated ST-Graph.
The connected components of the ST-Graph would represent ade-
quate clusters only if the clusters were distant from each other, but
it is not satisfactory when clusters are near to each other. In some
cases however, distinct clusters which are densely connected within
themselves are merged over sparse connections in between. Nearby
merged clusters can be detected and splitted-up on the basis of the
graph and is illustrated in Figure 2.

Input: A set of reports R, temporal threshold ∆t, spatial
range D, and optionally an additional set of
conditions Constraints

Output: Spatio-Temporal Clusters in STgraph

1 STGraph← new STGraph(R)
2 Clusters← new List()

/* First Step: data modeling */
3 foreach i, j ∈ R : i 6= j do
4 if

∧
CT∈Constraints

CT (i, j) then

5 if |L(x)− L(y)| < D ∧ |t(x)− t(y)| < ∆t then
6 STGraph.addEdge(i, j)
7 end
8 end
9 end
/* Second Step: graph clustering */

10 CCS ← ConnectedComponents(STGraph)
11 foreach CC ∈ CCS do
12 GPS ← GraphClustering(CC)
13 foreach GP ∈ GPS do
14 if size(GP ) > 1 then
15 Clusters.add(GP)
16 end
17 end
18 end
19 return Clusters

Algorithm 1: Clustering framework that computes the Spatio-
Temporal Clusters based on the generation of the ST-Graph and
its subsequent partition.

Based on this premise, it is natural to partition the connected
components of the ST-Graph, gathering vertices into groups such
that there is a higher density of edges within groups than between
them. This is done in line 12 of the framework. To combat this
problem a number of new algorithms for graph clustering have
been proposed upon different principles in recent years. Some are
built around the idea of using centrality indices to find community
boundaries, maximizing the number of intra-cluster edges optimiz-
ing the modularity measure [11]. It is not the focus of this work
to exhaustively discuss which graph clustering algorithm would fit
best in different cases. For the purpose if this work, we evalu-
ated a modularity based algorithm which finds densely connected

subgraphs in a graph by calculating the leading non-negative eigen-
vector of the modularity matrix of the graph [20]. This has proven
to deliver good results in our evaluation which will be discussed
in a later section. The result of applying the proposed clustering
framework to the SCF Chicago dataset can be seen in Figure 3.

4. DATA COLLECTION
We collected data from two separate real-world issue tracking

platforms that are actively used.
The first dataset originates from KA-Feedback (KAF), which rep-

resents an urban issue tracking platform in its beginnings. This
means that the dataset which was collected over the first year of the
platform’s existence is still rather small (2,821 reports by Febru-
ary 2014) and relatively sparse, both spatially and temporally. The
second dataset features a much larger amount of reports (34,690 en-
tries altogether) which were also much denser compared to the first
dataset. It contains open data that was extracted from the SeeClick-
Fix 3 (SCF) platform. SCF is a large issue tracking platform that
has deployments in several cities across the U.S., which also dif-
fer in size. The analyzed dataset is from one year of operation of
the Chicago deployment of SeeClickFix (between February 2013
and 2014). In order to enable sustainable and comparable research
results, we published this database as well as the clustering and
additional evaluation results on our website 4 as benchmark for fu-
ture publications. An exhaustive description of the dataset and its
attributes can also be found on the website.

The SeeClickFix Chicago dataset has the unique feature that a
large portion of the reports (32%) have been manually marked by
Chicago municipal case officers as duplicates. However, it is note-
worthy that the annotation of duplicate reports is not exhaustive. A
coarse inspection of random samples from the data revealed, that
there are in fact duplicate reports present, that have not been anno-
tated as such. We exploited the manual labels for two purposes:

1. Evaluation and comparison of spatio-temporal clustering:
Clusters are sets of objects in such a way that objects in the
same group are in some sense similar. The highest degree of
similarity is equality (duplicates). We thus expect the spatio-
temporal clusters to precisely cover a high degree of dupli-
cate reports. This will be exploited as evaluation metric in
the evaluation section.

2. Assess supervised duplicate classification: Supervised ma-
chine learning models can be trained on the already manually
classified data to learn to distinguish between duplicates and
non-duplicate reports. This will be discussed in the next sec-
tion.

5. SUPERVISED DUPLICATE CLASSIFICA-
TION

The strength of the unsupervised framework for clustering sim-
ilar and possible duplicate reports is strongly limited by the ap-
propriate manual setting of the spatio-temporal parameters. Su-
pervised machine learning models on the other hand possess the
characteristic to optimally learn how other attributes a report, apart
from the spatio-temporal ones, contribute to its duplicate status ac-
cording to patterns determined by the data labels. In the following
we will discuss the possibilities of assessing supervised machine
learning for duplicate classification and how it can be combined
3seeclickfix.com, open data access under Creative Com-
mons Attribution-Noncommercial-Share Alike 3.0.
4http://www.teco.edu/~borges/urbcomp14/
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Figure 3: Results after the data modeling step (left) and the refinement step (right) of the proposed framework on the SeeClickFix
Chicago dataset. Depicted are three graph representations of the clusters. One has been splitted into three distinct clusters after the
refinement (bottom). Another has been splitted into two clusters, removing a report from its original cluster (middle).

with the unsupervised framework, contributing to creating a pow-
erful duplicate classification model.

We exploited the duplicate labels in the SeeClickFix dataset in or-
der to use the data for training a supervised predictor for duplicate
classification. Some of the features have been directly extracted
from the reports’ description, like the SecondsActiveUpdate, which
captures the temporal length the users interact with a report over
the SeeClickFix portal website (time passed since the generation
of the reports and its last update). Others were synthetically cre-
ated based on the spatio-temporal neighborhood of the reports. An
example are the features characterizing the spatial and temporal
distance to the k-nearest neighbors of a given report (NNi-Spatial-
Distance, NNi-Temporal-Distance). For our experiments we have
considered the four (spatially) nearest neighbors, as we have not
noticed any significant improvement by taking more neighbors into
account. An exhaustive description of all features can be found in
our website.

The model we used is a Random-Forests [2] with 500 trees. The
choice for Random-Forests was based on its robustness against
overfitting as well as on its natural capability to assess variable im-
portance, used to evaluate the developed features. The importance
of the feature vectors for the model has been measured by means
of their role in decreasing the Gini index which the Random-Forest
uses as node impurity measure. Figure 4 shows the results for the
features we took into consideration and their suitability for dupli-
cate detection, measured by their contribution to a decrease in the
Gini Index.

As the most relevant features for the supervised classification
(e.g. Degree-in-ST-Graph & Is-in-Duplicate-Cluster) are the exact
same ones that we get as results from the unsupervised method, it
stands to reason to combine the two approaches. Spatio-temporal
patterns and other features that lead a report to be a duplicate can
thus be recognized directly from the data, contributing to a more
powerful enriched classification model. However, a fundamental
difference between the two approaches is the fact that the super-
vised method delivers a classic binary classification result, whereas
the clustering yields an aggregation of possible duplicates that be-
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#Comments
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Figure 4: Set of features from the SCF dataset used for clas-
sifying duplicates. For each feature the importance for classifi-
cation is compared by the mean decrease in the Gini Index for
a Random Forest model.

long together. Supervised methods that “link” duplicated data that
belong together (pairwise duplicate classification) have already been
investigated in the literature (cf. [25]) but have not been further in-
vestigated in this work due to nature of our datasets that lacks this
kind of information.
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6. EVALUATION
In the following, we will present the evaluation of our cluster-

ing framework and compare its performance to two contemporary
density based spatio-temporal clustering algorithms: ST-GRID and
ST-DBSCAN. For the purpose of evaluating the clustering and clas-
sification models we exploited the duplicate labels in the data. As
the KAF dataset is unlabeled in terms of duplicates, a qualitative
discussion of the results is given. For the SCF dataset labels are
present and a detailed discussion of the quantitative evaluation fol-
lows.

Figure 5: F-Measure Variation of our spatio-temporal cluster-
ing framework depending on spatio-temporal parameters.

The first evaluation regards the parametrization of the unsuper-
vised framework, as it has great effect on the clustering qualities.
In this specific evaluation case, we have tested the impact of the
thresholds on both precision and recall on the first step of the algo-
rithm regarding its ability to cluster duplicate reports: if the thresh-
olds are too restrictive, the precision is high but the recall low. Are
they too loose, the precision decreases and the recall increases. We
have thus used the F-Measure, combining both precision and recall,
to decide which parameters have the best impact on performance.
This is presented in Figure 5.

In the heatmap, the overall best parameters are marked red (D =
60m and ∆t = 20 days, F-Measure = 0.648). The yellow mark
represents the most restrictive parameters (90m and 7 days, F-
Measure = 0.628), that still deliver a good F-Measure. All our
experiments in this section were run using these parameters, con-
straining the clustering only among reports of the same category
(cf. line 4 of Algorithm 1).

In the following, we present the clustering results of running our
spatio-temporal clustering on the SeeClickFix Chicago dataset (see
Table 1). Our unsupervised approach groups 13,874 reports of the
SCF Dataset, classified as similar and thus as possible duplicates
by the algorithm, into 4,922 clusters. The KAF Dataset, contain-
ing 2,821 reports, revealed 285 clusters for 706 clustered reports.
The graph partitioning step has had just a small effect on the KAF
dataset compared to its effect on the SCF. Only 12 new clusters
are generated after the partition. This is mainly due to the spatio-
temporal density of the data. The KAF dataset is relatively sparse,
both spatially and temporally containing only a few small clusters
which are already densely connected, not being further partitioned
in the second step of the framework.

The clustering algorithms ST-GRID [33] and ST-DBSCAN [1]

Configuration Dataset SCF KAF
Parameters D,∆t 90m,7d 90m,7d

Before run Total Reports 34,690 2,821
Duplicates 11,121 n/a

After Step 1 Clustered reports 14,048 708
Clusters 4,533 273
Cluster size (µ, σ) 3.1, 2.46 2.59, 1.59

After Step 2 Clusters 4,922 285
Cluster size (µ, σ) 2.85, 1.57 2.48, 1.05

Table 1: Results after running our spatio-temporal cluster-
ing on the SeeClickFix Chicago (SCF) and KA-Feedback (KAF)
datasets.

Configuration Dataset SCF KAF
Parameters D,∆t 90m,7d 90m,7d

ST-GRID
(mp=2)

Clustered reports 10,413 589
Clusters 3,414 234
Cluster size (µ, σ) 3.05, 2.48 2.51, 1.52

ST-DBSCAN
(mp=2)

Clustered reports 16,947 981
Clusters 5,147 375
Cluster size (µ, σ) 3.29, 2.85 2.61, 1.47

ST-DBSCAN
(mp=bln(n)c)

Clustered reports 1,577 52
Clusters 116 5
Cluster size (µ, σ) 13.5, 4.21 10.4, 4.56

Table 2: Results after running ST-GRID and ST-DBSCAN
on the SeeClickFix Chicago (SCF) and KA-Feedback (KAF)
datasets with varying minPts (mp) parameter.

ST
GRID

ST
DBSCAN

Clustering
Framework

Random
Forest

F-Measure 0.549 0.599 0.648 0.702
Class.Error-True 0.468 0.243 0.231 0.339
Class.Error-False 0.190 0.362 0.285 0.104

Error Rate 0.28 0.32 0.27 0.185

Table 3: Comparison of duplicate classification performance
for the supervised and unsupervised models: F-measure, clas-
sification error for data labeled as duplicates (Error-True) re-
spectively labeled as non-duplicate (Error-False) and the over-
all error rate.

were run on the same datasets using the same spatio-temporal pa-
rameters and its performance was compared to our approach. In
addition to the spatial and temporal thresholds, both algorithms re-
quire a density threshold minPts. The proposed heuristic in [1]
is to set this parameter to be bln(n)c, n being the amount of re-
ports in the dataset (see Table 2). To be able to better compare its
results with our approach that does not discriminate dense regions
based on a density threshold, we also tested it with minPts = 2
and evaluated its performance regarding duplicate detection. ST-
DBSCAN has delivered a F-Measure of 0.599 and 0.187 and ST-
GRID yields a F-Measure of 0.549 and 0.039 for minPts = 2
and minPts = bln(n)c respectively. Our approach thus outper-
forms both ST-GRID and ST-DBSCAN with respect to the given
evaluation metrics.

The main problem of ST-GRID and in general of grid based
methods regards its discretization: it is sensitive to grid position
and resolution. For example, for a given density threshold τ , a
5Out-of-bag estimation of error rate (OOB)
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cluster can be missed, even though it contains more than τ points in
different cells. That’s why it groups fewer reports and finds fewer
clusters compared to other methods (cf. table 2). Density based
methods like ST-DBSCAN or our clustering framework find clus-
ters irrespective of orientation or size.

A comparison of the performance of the unsupervised models as
well as the performance of the enriched supervised model (Ran-
dom Forest) for the task of duplicate detection is given in Table 3.
Overall, the enriched supervised model delivers lower error rates,
outperforming all unsupervised models. However, labeled data is
not always available. Additionally, in our case the labeling did not
include information on which reports were “duplicate pairs”, but
this information would be especially interesting for better evaluat-
ing the different approaches.

7. DISCUSSION
Quantitatively, the performance of our presented methods points

to a significant potential speed up of manual processing in the un-
derlying application case. We believe that if case officers receive an
aggregated view of the detected clusters, they could sort out similar
reports and actual duplicates much more quickly and link back to
the original report. However, the prove that a semi-automatic sys-
tem using the proposed framework outperforms a manual system
when also looking at human factors has yet to be made. Aside from
that, the following subsections discuss some technical limitations.

The two methods we presented each have their specific strengths
and drawbacks. Their suitability strongly depends on the applica-
tion case.

7.1 Spatio-Temporal Feature Selection
The output of the clustering framework and the spatio-temporal

features we created are the features with the most predictive power
for the supervised duplicate classification as illustrated in Figure 4.
Once more, this confirms the strong relation between the spatio-
temporal neighborhood of a report and its likelihood to be a dupli-
cate. Interestingly, to date only a variety of features ranging from
text comparison to numeric similarities have been exploited for su-
pervised duplicate detection [5, 32]. However, spatio-temporal re-
lationships between records have not been exploited. Our research
thus provides new insights regarding the similarity metrics for re-
lationships of records in general, and in the use of spatio-temporal
attributes as an input feature for a supervised classification in par-
ticular.

7.2 Category-Sensitive Parametrization
Regarding the appropriate selection of the spatial and temporal

thresholds for our clustering framework, we evaluated harnessing
additional meta-information of the reports. One possibility we ex-
plored is to set the temporal thresholds according to the mean time
it takes to the municipal government to fix an issue (mean-time-
to-fix (MTF). In total 16.34% of the reports in the SeeClickFix
Chicago dataset are marked as fixed, wherein the overall MTF is
13.47 days ( σ = 30.56). The threshold can also be set differ-
ently (or even dynamically) for different categories of reports, as
we observed that the MTF strongly differs across categories (see
Figure 6). For example, broken traffic lights tend to get fixed within
a day or two, while potholes or abandoned goods are generally
tended to later. The means are depicted as white dots on the boxes.
To enable better visualization the plot as been cut on the 30th day,
obstructing the visualization of the box for the category Code Vi-
olations, which has a mean and a third quantile range from 78.09
and 190.0 days respectively. These categories have been artificially
created through text-mining based on the description of the report.

Figure 6: Mean Time-To-Fix (MTF) for different issue cate-
gories, sorted by frequency of occurrence.

The category “Code Violations” for example refers to reported is-
sues about Building or Sanitation Code Violation.

For the duplicate evaluation, applying dynamic parameters has
led to a best F-Measure of 0.638 tested with varying spatial param-
eters. Dynamic category-sensitive parametrization has thus not de-
livered any measurable advantages over the global best parameters,
which yields a F-Measure of 0.648.

7.3 Deriving Issue Importance from Cluster
Size

We found the great majority of the clusters to be dyads after
the first step of the framework on the SCF dataset (µ = 3.107,
Q2 = 2.0, Q3 = 3.0). 21.1% of the clusters are of size 4 or
higher, reaching a maximum of size 34. The size of the clusters can
deliver valuable information on the urgency of an infrastructure is-
sue, which can help civic servants not only to speed-up manual
issue handling by processing multiple issues at once but also to po-
tentially prioritize certain issues and better allocate their resources.
As by mean of example we found a relatively big cluster in the
KAF dataset containing descriptions of broken glass fragments on
a cycleway. Such big clusters are prone to describe issues which af-
fected a high number of citizens and can be easily discovered using
spatio-temporal clustering.

8. CONCLUSION
In this work, we have presented two spatio-temporal data anal-

ysis techniques and evaluated them on the data of two separate
real-world issue tracking platforms, one in its beginnings (2,821 re-
ports) and one mature (close to 35,000 reports). The first method,
an unsupervised clustering framework, uses parametrized spatio-
temporal clustering requiring only a temporal and spatial threshold
as parameters and providing very promising results for particular
applications. We have evaluated and compared our approach to the
state-of-the-art spatio-temporal clustering algorithms ST-Grid and
ST-DBSCAN, showing that our approach does even outperform
both approaches, delivering results which give excellent agreement
with expected results. The second method is a supervised ma-
chine learning approach using spatio-temporal features and Ran-
dom Forests for duplicate classification. Our results show that we
can automatically detect duplicate infrastructure reports with rea-
sonably low error rates (18%).
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This work presents an innovative use-case application of data
mining techniques to urban infrastructure monitoring. While with
growing participation, we see immediate need for such technolo-
gies in clustering and detecting possible duplicate reports, smaller
applications deal with other challenges, such as the reluctance of a
(mostly older) user base to go digital or the surprising efficiency of
manual operation. One result we got from interviewing was, how-
ever, that clustering could help humans better understand grouping
report information, so that semi-automated technologies are worth
investigating.

We have made the evaluated dataset publicly available and pub-
lished exhaustive information about our evaluation on our website,
in order to enable other researchers to compare their findings and
use our results as a benchmark for future work.

9. FUTURE WORK
While the framework presented in this paper can already greatly

facilitate manual processing of records from civic issue reporting
platforms, we intend to investigate how the application case could
benefit from further refinements and/or combination with other tech-
niques. Specifically, we aim to address three challenges in future
work.

Open Challenge 1: Online processing
In this work, we apply our framework offline. However, partic-

ipatory urban infrastructure monitoring would greatly benefit from
online and real-time processing of the data. This would allow the
detection of similar reports at the time new data is submitted by
a user. Due to the flexibility of our proposed framework regard-
ing the clustering, it is in principle well suited to work online and
in real-time. There are already several graph clustering techniques
for online clustering [13]. The insertion or deletion of an object in
a cluster affects the current clustering only in the spatio-temporal
neighborhood of this object. Every time a report is submitted, the
algorithm can search its spatio-temporal neighborhood in real-time
for similar reports, updating the graph structure model. If any is
found, a new cluster can be allocated or the report is added to an
already existing cluster. Nevertheless, the main challenge thereby
is to model and evaluate an accurate data transformation for the
framework in order to enable this online preprocessing in the first
step of our framework.

Open Challenge 2: Enriching the model with more informa-
tion

The clustering framework presented only considers spatio tem-
poral information, but we can extract more information from the re-
ports in order to achieve more accurate results. For example, infras-
tructure issue reports constitute spatio-temporal observations with
semantic content. In our experiments, we have shown this with
an supervised method for duplicate detection that considers other
attributes from the reports. However, we aim to introduce this in-
formation within the graph model for more accurate results. In
particular, we want to focus on the semantic hidden in the user re-
ports. In this work, we have trivially leveraged semantic similarity
by narrowing the spatio-temporal neighborhood to be only applica-
ble to reports of the same category. In future work we aim to com-
bine text analysis (e.g. on issue description) with spatio-temporal
features of the data. To achieve this, we can also apply existing
graph clustering model for attributed graphs [34, 12]. In the so
called attributed graphs each object is represented by its relation-
ships to other objects (edge structure) and its individual properties
(node attributes) [24]. Using this in our use-case, the ST-Graph can
also contain attribute information of the data. This would allow us

to find better patterns in the data that does not only relies on the
modeled graph structure but also embraces a set of other attributes
besides the spatio-temporal ones. Additionally, we can also enrich
our ST-Graph with different types of nodes (e.g., users as nodes)
or edges (e.g., friendships between users) using clustering tech-
niques for heterogeneous networks [30]. Although we can apply
such novel clustering algorithms for different graph types within
our framework, it is essential to provide our model with an accu-
rate data transformation of the initial reports provided by the users
in order to obtain good results.

Open Challenge 3: Scalability / Transferability
To the best of our knowledge, there are currently no clustering

or duplicate detection technologies being employed in large scale
participatory sensing applications. Therefore we would like to test
these methods in the actual operation of such large applications in
the near future. This is not limited to the application case of ur-
ban infrastructure monitoring. As the approach presented in this
paper works on spatio-temporal information, it can also be applied
to many other applications. This would allow us to generalize the
approach and evaluate it on other big spatio-temporal datasets. As
social networks like Twitter continue to increase the use of geo-
tagging, social networks are being increasingly researched to better
understand city dynamics and urban social behavior, delivering lo-
cation and time aware information which is an important aspect of
the urban phenomena [28]. Therefore, as we are researching en-
richments of our model with more information, this will open up
new possibilities to be considered in the future. On the other hand,
only using a temporal and a spatial parameter makes our framework
applicable to use cases, in which data has no additional semantic
information. One scenario which can greatly benefit from spatio-
temporal analysis is the calibration of distributed low-cost sensors
[26].
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