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Abstract. This paper presents a mobile, low-cost particulate matter
sensing approach for the use in Participatory Sensing scenarios. It shows
that cheap commercial o�-the-shelf (COTS) dust sensors can be used in
distributed or mobile personal measurement devices at a cost one to two
orders of magnitude lower than that of current hand-held solutions, while
reaching meaningful accuracy. We conducted a series of experiments to
juxtapose the performance of a gauged high-accuracy measurement de-
vice and a cheap COTS sensor that we �tted on a Bluetooth-enabled
sensor module that can be interconnected with a mobile phone. Cal-
ibration and processing procedures using multi-sensor data fusion are
presented, that perform very well in lab situations and show practically
relevant results in a realistic setting. An on-the-�y calibration correc-
tion step is proposed to address remaining issues by taking advantage of
co-located measurements in Participatory Sensing scenarios. By sharing
few measurement across devices, a high measurement accuracy can be
achieved in mobile urban sensing applications, where devices join in an
ad-hoc fashion. A performance evaluation was conducted by co-locating
measurement devices with a municipal measurement station that moni-
tors particulate matter in a European city, and simulations to evaluate
the on-the-�y cross-device data processing have been done.
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1 Introduction

With ever more evidence presented we have grown increasingly conscious of the
potential consequences of pollutants on our health and environment. Among
these, particulate matter (PM) pollution is especially hazardous, because �ne
dust can pass through our lungs directly into the blood stream, disrupt the gas
exchange, destroy cells and contribute to respiratory and cardiovascular disease.
In order to mitigate these risks, governments around the world have put regula-
tions into place regarding the maximum permissible levels of �ne dust. The US
Environmental Protection Agency (EPA) [39], the World Health Organization's
(WHO) [35] and the European Union [1] have declared di�erent limits for the
particle size classes PM10 and PM2.5.

1 China has announced to regulate PM2.5

levels nationwide from 2016 on [41].
However, we see several issues regarding those measurements and the concen-

tration limits. The density of control points (i.e. current o�cial measurement sta-
tions) is inadequate and thus values do not always re�ect our personal health risk.
Today, PM concentrations are usually determined through gravimetric measure-
ment, using so-called high volume samplers (HVS). Such certi�ed high-precision
devices are typically large, stationary and expensive and therefore very sparsely
deployed, typically only few stations covering large urban areas (see Table 1).
More �ne-grained measurements are important, since exposure levels have been
observed to vary even in close proximity, e.g. in di�erent streets of the same

1 In many sources, PMx is often (inaccurately) described as �all particles smaller
than x µm�. It is actually de�ned as �particulate matter which passes through a
size-selective inlet with a 50% e�ciency cut-o� at x µm aerodynamic diameter� [1].
The classes PM10 and PM2.5 roughly correspond to particles that can be breathed
into and deposited in the lungs, respectively even deeper in the alveoli, where they
may disrupt the gas exchange.

Fig. 1. Scenario: Enabling mobile, participatory PM sensing in large metropolitan
areas, e.g. in Beijing, China, with cheap commodity hardware.



City # of stations Area

Beijing, China 18 ∼16,000 km2 [40]

Berlin, Germany 12 ∼890 km2 [38]

Greater London, UK 83 ∼1,600 km2 [18]

Mumbai, India 7 ∼440 km2 [20]

New York City, USA 13 ∼1,200 km2 [24]
Table 1. Number of particulate matter measurement stations in selected metropolises.

city block [26]. Current static measurement grids can not provide the necessary
resolution.

Aside from ourselves, municipal authorities have a huge motivation to reduce
PM levels as well, since non-compliance to meet regulatory standards can result
in strong �nes: Even though currently not being enforced by the EU, the penalty
for exceeding the legal limits can be close to $1,200,000 � per day [22]. In order
to be able to e�ectively combat high PM levels, cities must be able to identify
hot-spots and temporary peaks in exposure. For this, both a high temporal reso-
lution as well as the timeliness of readings are important: A possible application
case could for instance be, that city governments exercise concentration-related
control of tra�c by temporarily prohibiting vehicular access to certain hot-spot
areas. A low latency is crucial for such a reactive system.

A Participatory Sensing approach is especially well-suited to address the de-
scribed aspects, as it intrinsically involves empowering citizens [9]. By providing
engaged individuals with low cost measurement devices, they can quantify their
individual exposure and at the same time by combining measurements of mul-
tiple people provide the necessary spatial resolution necessary for accurate city
wide estimations. Suitable tools to quantify PM levels need to be identi�ed or
developed. We focus on distributed, mobile measurements of �ne dust, as moti-
vated above. Important factors for suitable devices, respectively sensors are:

� compact : Sensors should be small, ideally embeddable into existing ubiqui-
tous technology like mobile phones.

� inexpensive: Mobile measurement solutions need to be a�ordable for Partic-
ipatory Sensing scenarios.

� usable: Avoid frequent maintenance, e.g. changing �lters, frequent charging,
expert calibration, etc.

� responsive: To identify sources and to enable reactive systems, timeliness of
data is important.

� accurate: Finally, the readings need to be meaningful.



2 Related Work

Participatory Sensing has been studied intensively and applied to environmen-
tal sensing problems. Good examples for generating awareness from distributed,
shared sensor readings are noise pollution maps of urban areas [29],[21]. Par-
ticipatory and mobile air quality measurement projects like GasMobile [15] and
Common Sense [12] have largely focused on gas sensing. Lacking COTS par-
ticulate matter sensors, �ne dust has largely not yet been considered in such
projects. The PEIR (Personal Environmental Impact Report) [19] calculates the
PM2.5 exposure based on parameters such as the distance from known haz-
ardous areas, e.g. freeways. While this can help people to assess their exposure,
it is actually dependent on better base data. Projects like botworld 2 use simula-
tion approaches to quantify dust dispersion more �ne granularly based on coarse
existing data. Neither project uses actual sensors.

Both the OpenSense project3 [4] and da_sense4 make use of public trans-
portation vehicles to measure air quality beyond a few �xed measurement sta-
tions. While da_sense proposes the integration from di�erent sources (such as
infrastructure sensors, environmental WSNs or smartphones) so far no PM data
is integrated. OpenSense on the other hand integrates the DISCmini fromMatter
Aerosol into the mobile measurement setup which gives a �ne grained resolution
for the covered tracks. Still, the DISCmini is an expensive commercial hand-held
particle monitor, it comes at a price of almost $15,000 , making it far too expen-
sive for larger scale participatory sensing scenarios. Other cheap devices, such as
the Personal Environmental Monitor (PEM) [33] or the UCB particle monitor
[10] are in principle suited for personal sensing, but have drawbacks of their own:
The PEM 's gravimetric measurement reportedly o�ers good results, but readout
is delayed and di�cult for non-expert users, while still costing ∼$500. The UCB
monitor is only intended for use in indoor environments.

An interesting study using bicycles as a platform to carry out mobile mea-
surements is described in [26]. The authors conclude �that a limited set of mobile
measurements makes it possible to map locations with systematically higher or
lower ultra-�ne particles and PM10 concentrations in urban environments.� They
used semi-professional equipment to monitor PM10 levels, which is unsuitable
for Urban Sensing scenarios because of its cost. [17] presented a distributed net-
work of nodes using the low-cost Sharp GP2Y1010 sensors in order to monitor
dust, particularly in urban areas. The accuracy was analyzed against that of a
gravimetric measuring device. However, the paper focused on network aspects
and does not contain detailed information on the evaluation, just that the results
were �calculated based on 20 measurements�. No information on the sampling
frequencies or the duration of those measurements is publicly available. In [25],
a wireless sensor node for indoor particulate matter sensing is presented, and
its calibration and performance are discussed and evaluated. While the authors

2 http://www.botworld.info/
3 http://www.opensense.ethz.ch/
4 http://www.da-sense.de/



claim that their system �. . . can monitor the air quality in real time in large
spaces, such as a subway station, at a lower cost than existing commercial prod-
ucts�, no details on the sensor itself or its cost are actually presented. A similar
project is the Dust sensing Project [11] which used Sunspot nodes. While a
detailed description of nodes and sampling code is available, no evaluation of
sensitivity and accuracy was published.

Another interesting approach to measuring atmospheric dust in Participa-
tory Sensing scenarios has been presented by the Air Visibility Monitoring [27]
respectively the iSPEX 5 projects. People use their camera phones to take pic-
tures of the sky and upload them to a central database. There, from the image,
location and phone sensor data (e.g. orientation), the air pollution is calculated.
Cloudy skies and indoor environments are a clear limitation to this approach. In
parallel to the work presented in the paper at hand, we worked on integrating an
optical dust sensor with mobile phones. The general feasibility of an approach
to use the camera and LED �ash as the receptor respectively the light source of
such a sensor has been shown in [5]. Most of this work's results are applicable
to such a system as well.

3 Sensing System

A number of companies o�er small, generally embeddable particulate matter
sensors that could �t in a hand-held measuring device. Several small sensors are
compared in [8], the results indicating that only few of those sensors actually
seem suitable for the use in mobile PM measurement scenarios. We chose the
Sharp GP2Y1010 , a cheap commodity dust sensor, as basis for our work, as it has
been used in several dust sensing projects [2,3,11,13,17,23,30]. However, none of
these supply information on how they enabled accurate readings from the simple
sensor � or whether they did at all. In order to do this ourselves, we conducted
a series of parallel measurements with the GP2Y1010 and a high-accuracy laser
photometer as reference device, the TSI DustTrak DRX 8533 Aerosol Monitor
[36].

3.1 Dust Sensor

The GP2Y1010 employs light scattering as operation principle: An IR light
beam is emitted into a measurement chamber. When dust is present, the light
is refracted by particles and the amount of scattered light is detected. The mea-
surement chamber is designed to be a light trap, so that only the refracted light
falls onto the receptor (see Figure 2).

While the sensor has been used in previous work and seems promising, it was
clearly not designed to provide accurate absolute readings. The GP2Y1010 is
intended for the use in air conditioners and air puri�ers [31], its default detection
granularity is limited to the coarse distinction between �house dust�, �cigarette

5 http://ispex.nl/en/



(a) (b)

Fig. 2. (a) The Sharp GP2Y1010 dust sensor, and (b) the structure of its light trap
on the inside and visualization of its operation principle.

smoke�, and �no dust�. Although its data sheet shows an exemplary relationship
between the dust density and the sensor's output voltage, it states that the
graphs are "`just for reference and are not for guarantee" [32]. After applying an
approximation of this curve to the readings of the sensor and comparing it to the
measurements of the TSI DustTrak reference device, we can see that the sensor
output is very noisy and the curves do not match (see Figure 3). This, along
with the fact that di�erent specimen of the sensor displayed strongly varying
output levels, lead to experiments with signal processing and calibration.
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Fig. 3. Raw readings of theGP2Y1010 , computed according to the exemplary reference
curve in the datasheet [32], vs. those of the TSI DustTrak .

After initially building our experiments on an Arduino Mega platform, we
eventually switched to using the TECO Envboard (see Figure 4), as its housing
protects the sensor from other possible sources of error, such as �uctuating ambi-
ent light conditions [37] or bedewing [31]. In addition to that, it carries multiple
additional sensors, which we investigated regarding their use to provide supple-
mental data that is bene�cial for our e�orts to reach a high accuracy. Finally, it
is equipped with micro-fans that ensure a constant air �ow through the sensor,
which enables continuous measurements, while reducing the risk of residual dust
staying trapped in the sensor and compromising accuracy.



Fig. 4. The TECO Envboard , an environmental multi-sensor platform with Bluetooth
interface and multiple sensors, that was used in our experiments.

3.2 Accuracy Improvements

We started developing our re�nements by investigating the performance of the
Sharp GP2Y1010 and its ability to measure the particulate matter concentra-
tion in the air using the setup described in [8]. All sensors were used as they
were delivered, using their unmodi�ed factory sensitivity settings. We sampled
the sensors at the maximum possible frequency according to the LED pulse
width and waiting times documented in the data sheet [32], which resulted in a
sampling rate of ∼100Hz. The TSI DustTrak DRX 8533 Aerosol Monitor refer-
ence monitor sampled at its maximum rate of 1Hz, calibrating it according to
the manual [36] prior to each measurement run. We neither used impactors nor
�lters to keep our samples clean from coarse dust.

Noise Reduction The �rst step towards de-noising the sensor output was elim-
inating the outliers and thereby smoothing the output. Since our reference device
was sampled at 1Hz, we also sliced the GP2Y1010 readings into windows of 1 s
length and calculated the median over the 100 samples. The results are shown
in Figure 5. A correlation between the Sharp GP2Y1010 output (upper curve)
and the TSI DustTrak measurements (lower curve) becomes more clearly visible.
As the particulate matter concentration decreases from about 100 µgm3 to 50 µgm3

within the �rst four minutes, the GP2Y1010 output shows a similar tendency
and decreases as well, albeit only slightly. The increase in dust concentration
between the fourth and the sixth minute is also re�ected in the sensor's read-
ings. As a second process step to further reduce the noise, we applied a moving
average �lter with a window size of 60 s (i.e 60 data points) on the data. We
separated the noise reduction into two steps, because the �rst one can be easily
carried out in the sensing device before logging or transmitting the data. By
this, we can achieve data reduction without losing signi�cant information. The
second step for further smoothing can either be carried out on the device or on
a back-end system. By adjusting the window size, a tradeo� between accuracy
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Fig. 5. De-noised sensor output by averaging (median) over 1 s-windows.

and timeliness can be made.

Calibration Using these improvements, we attempted to calibrate the Sharp
GP2Y1010 by mapping its output to the corresponding particulate matter con-
centration, in order to later allow the direct calculation of the dust concentration
in the air. The sensor does not feature di�erent channels or any other means to
distinguish between particles of di�erent sizes. Instead, we derived di�erent cali-
bration coe�cients for PM10 and PM2.5 respectively. To have a broad spectrum
of dust concentrations for calibration, we built a self-made dust dispenser (see
Figure 6). It basically consists of a box and fan that is connected to a small bale
of steel wool (a). When the fan is turned on, the steel abrades chalk inside of
the box and blows it into the outer containment (b). A �lter sheet is used to
prevent too much dust being dispensed at once. In the full calibration setup, the
air �ows through the dispenser, then into the box containing the Envboards and

(a) (b)

(c)

Fig. 6. Calibration setup: (a) dust dispenser box with chalk reservoir and steel wool,
(b) outer containment, and (c) complete setup.



�nally through the TSI DustTrak (c). This dispenser makes it possible to quickly
generate high dust concentrations which will decay slowly after turning o� the
dispenser. By alternating dispensing and ventilation phases, we enabled readings
over the full spectrum of the sensor. For the actual calibration of the sensors
we performed measurements over 18 hours, again sampling the GP2Y1010 at
100Hz and the TSI DustTrak at 1Hz. The dust dispenser was set to be turned
on for 15 minutes once an hour. This lead to a repeated sequence of rising and
falling dust concentrations, allowing the sensors to repeatedly measure di�erent
concentrations levels.

We �rst applied the two de-noising steps that were described in the previous
section. The second step was also applied to the readings of the TSI DustTrak.
Based on this data, we calculated a linear scale factor a and o�set b between the
two curves as coe�cients for the raw readings x to calculate the concentration
ρ(x):

ρ(x) = a · x+ b

The results of these steps are depicted in Figure 7, once after the �rst de-noising
step (a) and once after the subsequent smoothing of both curves (b). The graph's
ordinate represents the time (in min) and plotted on the y-axis are the readings of
the GP2Y1010 (10-bit ADC-values, black curve), respectively the PM10 values
measured by the reference device (in µg

m3 , red curve). These �gures clearly show
that it is possible to align the readings of both devices by linear calibration
coe�cients.
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Fig. 7. Processing by de-noising and linear calibration: (a) slicing into 1 s windows, (b)
smoothening through moving average �lter with 60 s window.

However, when applying the calibration data on consecutive measurements,
we encountered new problems: We discovered that the o�set of the sensor seemed
to � `jump around� between di�erent measurement runs, i.e. the sensor baseline
de-calibrated. Also, the sensors displayed a signi�cant drift over time. Both ef-
fects can be observed in Figure 8. The graph shows an 18-hour sampling session
with the dust dispensing pattern described above. We applied the coe�cients
derived from a previous calibration run. In order to quantify the drift, we exam-
ined several sensors over multiple measurement runs. We found that the drifting
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Fig. 8. (a) Drift when applying the calibration on a second 18 h-measurement and (b)
compensation through simple relative baseline manipulation.

behavior exhibited was nearly linear with time and very similar for multiple
passes. Thus, we were able to reduce the drift by simple relative baseline manip-
ulation. We introduced a separate calibration step for each sensor to determine
its time-dependent drift factor k. Using this, we adjusted our calculation of a
and b. This lead to the following new formula for calculating the concentration
ρ:

x̂(t) = x− k · t
ρ(x, t) = a · x̂(t) + b

= a · (x− k · t) + b

Figure 8 (b) shows the result. Still, we saw further room for improvement. In or-
der to tackle this, we examined the e�ects of other parameters on the GP2Y1010
output.

Sensor Fusion At this point, we switched to using the TECO Envboard sen-
sor platform [6], since there is a documented temperature dependency of the
GP2Y1010 [31]. We analyzed the readings of the Envboard 's internal Sensirion
SHT21 digital temperature and humidity sensor. There is a very strong rela-
tionship between the readings of the two sensors (see Figure 9).

To correct for this, we again devised a linear compensation6 as a function of
the temperature T according to measurements taken at a reference temperature
T0 of 20

◦C. We introduced another calibration step after the drift compensation
and before calculating the scale factor and o�set, again leading to a revised
formula for calculating a and b, respectively ρ:

ˆ̂x(T ) = x̂(t) + αT ·∆T
ρ(x, t, T ) = a · ˆ̂x(T ) + b

= a · (x− k · t+ αT ·∆T ) + b

6 We expect this formula to perform less well in extreme temperatures and aim at
replacing the linear correction in the future.
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Fig. 9. Measurements at a constant concentration of 0 (zero �lter) vs. SHT21 temper-
ature readings.

Overall, the combination of these steps greatly improved accuracy of the read-
ings. However, the already observed e�ect of the o�set de-calibration could not
completely be eliminated by this. While the scale factor a could be accurately de-
rived from the calibration process, several independent in�uences lead to a shift
in the o�set b. The base line of the sensor output shifts not only with varying
temperature, but also depending on other factors, such as changes in the mea-
surement frequency (even though within speci�cation). As a result, we neither
sampled the sensor irregularly nor changed the �xed sampling frequency between
measurement passes. We also observed shifting base levels depending on the sub-
set of sensors that we sampled. While this may be due to device peculiarities, we
decided to use a �xed set of sensors for all our consecutive measurements. Even
so, we kept encountering changes in the o�set between measurement runs. The
o�sets seemed to change randomly every time the sensors are turned o� and on,
even after trying to remove any residual charge. Therefore, we decided to make
use of additional information we may have in Participatory Sensing scenarios to
combat this problem.

On-the-�y Calibration Correction While all previous improvement steps
took place on the device level, Participatory Sensing scenarios have the poten-
tial to further improve measurement accuracy by sharing information across
devices. This can be as simple as averaging readings from co-located devices to
reduce measurement errors. More sophisticated approaches may take the shape
of the actual data, dispersion models, calibration age, device type, etc. into ac-
count when correcting values as well. An example for the application of instant
calibration of low-cost gas sensors, either in each other's vicinity or even multi-
hop, was presented in [16]. We propose to use the data from co-located sensors
to eliminate the problem of o�set de-calibration that the GP2Y1010 described
above. In order to do this, we used measurements from a co-located reference
point to correct the calibration of the hand-held devices. A reference point can
either be a high-precision professional measurement station or another device
which has a high con�dence that it is correctly calibrated. The device that car-
ries the GP2Y1010 sensor then uses the reference values to correct its bias. As
we only intend to correct changing o�sets, only very few measurements have to



Device (Sensor) Detection Method Max. Rate Range Price

Envboard [7]

Sharp GP2Y1010 [32] light (IR) scattering 1Hz† ∼0 � 500 µg
m3 $ ∼10‡

TSI DustTrak DRX 5833 [36] light (laser) scattering 1Hz 1 � 150,000 µg
m3 $ ∼9,000

State-operated Measurement Station
Grimm EDM 180 [14] light (laser) scattering ∼10/min 0.1 � 6,000 µg

m3 $ ∼35,000

Leckel SEQ47/50 [34] gravimetric 24h-mean n/a? $ ∼20,000
Leckel SEQ47/50 gravimetric 24h-mean n/a $ ∼20,000
† Using the de-noising steps presented in this work. The maximum raw sampling rate is ∼100Hz.
‡ Cost of the analogue sensor. Additional costs for the data logger platform.
? Gravimetric measurements do not have an upper bound except their total �lter capacity.

Table 2. Comparison of measurement equipment used in the di�erent evaluation
settings.

be transmitted from the reference device to achieve notable improvement. We
show the potential improvement by simulation in the next section of this paper.

4 Evaluation

Aside from the hours of measurements we made throughout the process of im-
proving the sensors' accuracy, we conducted two longer measurement sessions
in order to evaluate the performance of our system under operating conditions:
Firstly, we did a controlled indoor evaluation of the calibration. Secondly, we
co-located the sensor platforms with o�cial state-owned measurement stations.
Thirdly, we simulated on-the-�y calibration correction for all evaluation runs
and discuss the possible improvements. In addition to our sensor boards and
the reference device, we obtained the data from the o�cially approved measure-
ment equipment that is used in the state's monitoring stations. Table 2 shows an
overview of the measurement equipment that was used in the test. It is notewor-
thy that the GP2Y1010 dust sensor costs only a fraction of the reference devices.
This section shows how well our improved readings compare to the accuracy of
the professional equipment.

4.1 Lab Evaluation (Indoor)

The �rst session was an indoor evaluation of our processing steps. In contrast to
the prior calibration, our sensor platforms were only co-located with the reference
meter, but not sampling the exact same air �ow (see Figure 10). We measured
the indoor particulate matter concentrations using six TECO Envboards and the
TSI DustTrak , which was only sampled every fourth second, since the maximum
sampling frequency is limited by the internal logging space (18h at 1Hz) and we
intended to validate our re�nements over a longer period of time (three days).
The measurements of the PM2.5-concentration are shown in Figure 11 (a).

As expected, it is clearly visible that the readings from the calibrated hand-
held devices show a strong correlation to those of the reference device, the scale



Fig. 10. Setup of the indoor lab evaluation: Six Envboards and the TSI DustTrak as
reference.

factor calibration was successful. However, it can also be observed that the prob-
lem of o�set de-calibration persisted. The TSI DustTrak measured an average
of 46.8 µgm3 over the 60 hours, the Envboards measured averages between 18.5 µgm3

and 68.5 µgm3 . This can be already considered to be very accurate in light of the
intended use of the Sharp GP2Y1010 . Further calculations lead to even bet-
ter results: By simply taking the mean of the �ve devices, we arrive at a very
close match to the values measured by the TSI DustTrak . However, this is not
generalizable and only limited trust can be put into the values of a single device.

This is why we continued to simulate the on-the-�y calibration correction we
presented earlier. Figure 11 (b) shows the dust concentrations measured by the
hand-held devices after applying the on-the-�y calibration step. We randomly se-
lected three consecutive data points from the reference device and �transmitted�
them to the mobile devices, which in turn �calculated� the di�erence between
the locally measured values and the reference value in order adjust their o�-
set accordingly. This notably improved the accuracy of the devices. Similar to
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Fig. 11. Indoor PM2.5 evaluation: (a) calibrated GP2Y1010 sensors against the TSI
DustTrak reference, (b) values after on-the-�y correction.



PM2.5, the PM10 curves of the hand-held devices show the same general be-
havior. Without on-the-�y calibration, the o�sets were a little larger, and the
simple mean did not �t as well. After simulating on-the-�y calibration, the gain
was comparable to the PM2.5-case.

4.2 Field Evaluation (Outdoor)

For our �eld evaluation, we co-located several Envboards with an o�cial state-
owned station that measures di�erent types of background pollution. Our mea-
surements took place in the late Winter 2012/13. We used the same, unaltered
devices as in the lab evaluation, the only di�erence being that we placed them
inside a small, well ventilated box in order to shield them from rain and snow
(see Figure 12). We added the TSI DustTrak as well. This setup was then placed
on the rooftop of the measurement station, next to the air inlets of the other

(a) (b)

(c)

Fig. 12. Field evaluation: (a) state-operated measurement station, (b) equipment in
weather protection box, and (c) installment on rooftop.



samplers, and logged for seven days continuously. After retrieving our setup, we
compared the data of the o�cial measurements to our own.

The state uses three measurement devices at the station, one optical and
two gravimetric (for details, see Table 2). The Grimm Technologies Model EDM
180 PM Monitor is a laser scattering aerosol meter that has �the European
Equivalence Approval for PM10 and PM2.5 as well as the US-EPA Approval
for PM2.5� [14]. It measures the PM10, PM2.5 and PM1 levels at a maximum
frequency of ten samples per minute. Usually, the state is not interested in such
a high temporal resolution, so that only 15 or 30 minute averages are recorded.
Their main aim is to be able to release timely readings of the 24h-means before
the gravimetric measurements are analyzed in the lab. The gravimetric readings
in the station are gathered by a pair of Leckel SEQ47/50 High Volume Samplers
(HVS) [34], one for PM10 and one for PM2.5 measurements. It takes between one
and three weeks before the data from the gravimetric measurements is available,
since the �lters are periodically collected and weighed in the lab. The resulting
data is then also used to perform a backwards correction of the time series
data from the EDM 180 , since experience has shown that even the certi�ed
optical measurements show a deviation of within ±10% accuracy. However, since
we expressed our interest in data with a higher temporal resolution, the state
supplied us with 1min-averages of the sampled values.

The PM2.5-concentration over the seven days is shown in Figure 13, PM10 in
Figure 14. The devices show the same phenomenon as in the indoor experiment.
The GP2Y1010 is able to detect the changes of the dust concentrations but the
values have a constant o�set to reference values. Additionally, some inaccuracies
regarding the scale factor are also visible. The transfer of the indoor calibration
coe�cients to the outdoor scenario did not work as smoothly as we had hoped.
One explanation for the observed deviation could be that the temperature out-
side was as low as −5 ◦C, much lower than we went when characterizing our
sensors' temperature dependency. We assume that the simple linear correction
we used is inadequate at �more extreme� temperatures. Aside from the contin-
uous measurements, we also looked at 24h-means of each device, as this is the
quantity that is currently relevant for regulatory purposes. The results are shown
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Fig. 13. Outdoor PM2.5 evaluation: (a) calibrated GP2Y1010 sensors against the TSI
DustTrak reference, (b) values after on-the-�y correction.



in Figure 15 and Figure 16 respectively. We can see that on-the-�y-calibration
achieves improvement in the outdoor scenario as well. This is especially true for
the 24h-means which can be brought down to a very small error, both individ-
ually or when averaging over multiple devices.

5 Conclusions

In this work, we have presented and evaluated particulate matter sensing tech-
nology for the use in Participatory Sensing scenarios. We investigated a cheap
commercial o�-the-shelf (COTS) dust sensor, the Sharp GP2Y1010 in terms of its
accuracy and presented several calibration, processing and sensor-fusion steps,
that lead to meaningful readings from the sensor � which originally is only in-
tended for the coarse distinction between �dust� or �no dust�. We showed, that
in a Participatory Sensing scenario, devices equipped with the sensor can use
information from co-located devices in order to stabilize and improve their read-
ings. This distributed or mobile measurements at a price at least one order of
magnitude lower than that of current hand-held solutions.

6 Future Work

While we are already excited by the presented results, there are still open issues
and further work can be done to build on this work.

� Other In�uences: While this work shows that calibration procedures and
temperature correction already enable meaningful readings from the cheap
GP2Y1010 , other factors of in�uence should be examined as well, such as
humidity, air pressure, etc. It is to be expected that high levels of humidity
can have an impact on the sensor readings as any light scattering sensor will
detect a higher particle mass due to condensation e�ects. It has already been
shown that the reference device that we used is sensitive to high humidity
and that this can be compensated [28]. For the experiments in this work
however, humidity was not an issue as it did not exceed medium levels.
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Fig. 14. Outdoor PM10 evaluation: (a) calibrated GP2Y1010 sensors against the TSI
DustTrak reference, (b) values after on-the-�y correction.
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Fig. 15. Comparison of 24 h-means for PM2.5 before (a) and after (b) applying the
on-the-�y calibration.
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Fig. 16. Comparison of 24 h-means for PM10 before (a) and after (b) applying the
on-the-�y calibration.

� Sensor Improvement : Although we have gotten very much out of the simple
GP2Y1010 sensor already, some problems persist. The issue with the o�set
de-calibration (�jumping o�sets�) has not been solved on a single-device-level.
Further experimentation might eliminate it, enabling accurate readings on
an individual device. The integration of a dust sensor in the replaceable back
shell of a smartphone would be a beautuful solution requiring no hardware
modi�cations at all, an maybe even eliminating some of the sensors peculiar-
ities. Other worthwhile steps should include miniaturization e�orts or even
completely novel sensor designs to eventually enable the embedding of PM
sensors into smartphones.

� User Calibration: An issue with the presented calibration approach is that a
normal consumer usually will not be able � or willing � to perform the nec-
essary calibration steps, which directly a�ects the data quality. This work
already presented algorithms where systems re-calibrate each other by ex-
ploiting periodic proximity to reference stations. In an actual urban sensing
application with su�cient participants, the presented calibration could also
be easily �virtualized�, i.e. new devices could learn their calibration curves
(e.g. using machine learning techniques) once they enter the measurement
grid. The need for explicit calibration by the end user would vanish.



� Actual Mobility : While intended and generally suitable for mobile measure-
ments, so far, we evaluated only the performance of the sensor at �xed lo-
cations. Experiments that assess the impact of mobility need to be carried
out.

� Incentivisation: Another important aspect of Participatory Sensing is moti-
vation, i.e. users need incentives to deploy sensors, collect data and ensure
its quality. Gami�cation approaches may be bene�cial to persuade people
to participate, once su�ciently cheap measurement devices are available to
the public. By analyzing both sensor and game data on a higher level, new
ways of persuading participants, e.g into taking measurements at certain
low-coverage points, could be developed within such gami�ed environmental
sensing systems.
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