
jActivity: Supporting Mobile Web Developers with
HTML5/JavaScript based Human Activity Recognition

Michael Hauber, Anja Bachmann, Matthias Budde, Michael Beigl
TECO, Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{mhauber, bachmann, budde, michael}@teco.edu

ABSTRACT
Human Activity Recognition (HAR) using accelerometers
has been studied intensively in the past decade. Recent
HTML5 methods allow sampling a mobile phone’s sensors
from within web pages. Our objective is to leverage this for
the creation of individual activity recognition modules that
can be included into web applications to allow them to gain
context-awareness. In this work, jActivity, a first prototype
of such a platform-independent HTML5/JavaScript frame-
work is presented, along with experiments to determine the
general feasibility and challenges for HAR in web applica-
tions. Our results indicate that the realization looks promis-
ing, albeit so far limited to certain devices/user agents.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design; Experimentation; Measurement; Performance

Keywords
Activity Recognition; Context; Mobile Sensing; HTML5;
JavaScript; Responsive Design; Progressive Enhancement

1. INTRODUCTION
Smartphones are increasingly widespread and continuously

gain more sensor and processing capabilities. A lot of re-
search has been conducted to leverage these powers for Hu-
man Activity Recognition (HAR). This work aims at facili-
tating HAR within web applications on mobile devices, using
the new capabilities defined by the World Wide Web Consor-
tium’s (W3C) Candidate Recommendation for the HTML5
standard. jActivity can provide developers with an easy way
of integrating context-awareness into their applications – e.g.
to create responsive designs – without having to implement
and train classifiers themselves. Examples for this are a bi-
cyclist’s navigation app that can automatically increase the

This is the author’s version of the work, posted here for personal use. Not
for redistribution. Copyright is held by the owner/author(s). The definitive
version was published in:

MUM ’13 Dec. 02-05, 2013, Luleå, Sweden
Copyright 2013 ACM 978-1-4503-2648-3/13/12
DOI: http://dx.doi.org/10.1145/2541831.2541873 .

font size or audio volume during a bumpy ride, or an inter-
action app for the control in smart spaces [3], that directly
enables people within the environment to interact with ob-
jects – e.g. via gesture recognition. A wide range of work
has already been done on HAR using mobile phones [4, 5].
We build on performing the classification on the device it-
self and the training of classifiers on a server, as proposed
by ActiServ [2]. Recently, Google also integrated an activity
recognition API [1] into Android. First JavaScript APIs for
mobile web browsers are emerging as well: Webinos, a plat-
form to develop web applications for a wide range of devices,
shows the capability of HTML5/JavaScript [7]. However, it
focuses on security and does not offer a HAR component.

2. SENSING FRAMEWORK
Fig. 1 shows the components and workflow of jActivity :

Web developers include a HAR module into their web appli-
cation and configure the set of activities that they wish to
distinguish (Fig. 1, 1©). When a user accesses the applica-
tion (2©), a classifier is loaded dynamically according to the
user agent of the mobile device and the activity set specified
by the developer (3©). On the back-end runs an acquisition
web app, to which users can submit labeled activity data
(a©). This is not mandatory in order to use the application,
since the training data collection is crowdsourced and the
collected data is employed for all developers’ web applica-
tions that use jActivity. This way, a growing set of classifiers
is trained (and continuously re-trained) using standard HAR
methods (b©), each one specific to sets of activities and user
agents and available to the whole jAcitivity community.

USERSHAR SERVICEDEVELOPER

SERVER
DEVELOPER‘S
WEB APP

1 develop app,
select activity set JS

HAR.js

JS

train.js

TRAINING
WEB APP

TRAINER
SERVICE

3 dynamically
load classifier

DB

JS
JS
JS

iOS.iP5.safari7.js

JS

2 use
web app

a add
training

data
(optional)

b

Figure 1: The jActivity HAR web framework.

http://dx.doi.org/10.1145/2541831.2541873

OS Browser Device DeviceMotion() DeviceOrientation() GPS
mean stdev. median mean stdev. median

iOS
Safari 6 iPhone 4 20 Hz 0.14 Hz 20 Hz 20 Hz 0.14 Hz 20 Hz yes
Safari 7 iPhone 5 20 Hz 0 Hz 20 Hz 20 Hz 0 Hz 20 Hz yes

Android 2.x Opera 12
HTC Wildfire —— n/a —— —— n/a —— yes
HTC Desire 9.71Hz 1.42 Hz 10 Hz 10.21 Hz 0.76 Hz 10 Hz yes

Android 4.x

Opera 12

HTC Desire Z 11.13Hz 1.24 Hz 11 Hz 3.90 Hz 4.07 Hz 3.50 Hz yes
Sony Xperia 72.66 Hz 37.71Hz 92 Hz 29.49 Hz 31.02Hz 27 Hz yes

Samsung Galaxy SII —— n/a —— 9.98 Hz 0.14 Hz 10 Hz yes
Samsung Galaxy SIII —— n/a —— 9.82 Hz 0.56 Hz 10 Hz yes
Samsung Galaxy S4 —— n/a —— 9.92 Hz 0.34 Hz 10 Hz yes

Google Nexus 4 15.65 Hz 0.80 Hz 16 Hz 15.22 Hz 1.45 Hz 16 Hz yes

Firefox 23

HTC Desire Z 6.55Hz 3.52 Hz 8 Hz 40.40 Hz 8.95 Hz 38 Hz yes
Sony Xperia 8.77Hz 0.54 Hz 9 Hz 98.07 Hz 3.64 Hz 98 Hz yes

Samsung Galaxy SII 96.43 Hz 2.78 Hz 97 Hz 96.42 Hz 2.85 Hz 97 Hz yes
Samsung Galaxy SIII 98.50 Hz 3.31 Hz 99 Hz 198.86 Hz 6.21 Hz 199 Hz yes
Samsung Galaxy S4 99.88 Hz 1.29 Hz 100 Hz 99.88 Hz 1.16 Hz 100 Hz yes

Google Nexus 4 103.63 Hz 99.70Hz 117 Hz 136.71 Hz 78.87Hz 167 Hz yes

Chrome 28

HTC Desire Z 8.29Hz 11.12Hz 0 Hz 6.25 Hz 4.71Hz 9 Hz yes
Sony Xperia 20.30 Hz 7.41 Hz 23 Hz 9.84 Hz 0.47 Hz 10 Hz yes

Samsung Galaxy SII 23.73 Hz 1.13 Hz 24 Hz 9.90 Hz 0.47 Hz 10 Hz yes
Samsung Galaxy SIII 24.62 Hz 0.63 Hz 25 Hz 9.36 Hz 0.81 Hz 10 Hz yes
Samsung Galaxy S4 24.37 Hz 0.73 Hz 24 Hz 6.89 Hz 1.71 Hz 7 Hz yes

Google Nexus 4 —— n/a —— 8.68 Hz 1.34 Hz 9 Hz yes

Windows Phone 8 IE 10 Nokia Lumia 820 —— n/a —— —— n/a —— yes

Table 1: HTML5 event support and sampling rates on major mobile operating systems for different devices.

3. FEASIBILITY STUDY
As a first proof of concept, a prototype of the data gath-

ering module was built and tested on different mobile plat-
forms and devices (see Tab. 1). On each device, 30 to 60 sec-
onds of raw sensor data were recorded on an otherwise idle
phone, while steadily holding it in hand. The two HTML5
events DeviceMotion (accelerometer) and DeviceOrienta-

tion (gyroscope and compass combined) were analyzed re-
garding their frequency, as web developers can not set the
desired sampling rate. The achieved rates were calculated by
dividing the data into 1-second-bins, counting the events and
averaging over the time. We observed differences between
the devices/user agents in the achieved sampling rates.

To detect many human activities, data should be gathered
with at least 15-20 Hz [6]. On iOS/Safari, the possible rates
seem to be fixed to 20 Hz, which we stably observed on sev-
eral devices. Android devices perform very differently: All
older phones did not deliver high enough sampling rates for
activity recognition in our experiments (values emphasized
in Tab. 1). On Android 2.x, some newer browsers were un-
available, and on some legacy devices, the HTML5 events
could not be accessed at all. On Android 4.x, sensor access
worked for all tested devices, albeit with strongly platform-
dependent performance. Using Firefox, much higher rates
were mostly reached in comparison with Chrome and Opera.

The stability of the readout varied as well. While most
platforms showed stable sampling rates, some device/browser
combinations exhibited partial dropouts, delivering no sen-
sor data for a second or more. This was observed for the
Nexus 4 in Firefox, the Desire Z in all browsers, and the
Xperia in Opera (bold in Tab. 1). Another interesting ob-
servation was, that on Opera, sometimes a page refresh was
necessary to get the sensor readout to work. Still, using the
Galaxy S -series, all attempts at reading out the DeviceMo-

tion() event failed. The same happened for the Nexus on
Chrome. The current Internet Explorer version on Windows
Phones 8 does not support the new HTML5 events at all yet.

4. CONCLUSIONS
In this work, we proposed jAcitivity, a framework for the

integration of HAR functionality in web applications. Our
first experiments with the data gathering module indicate
the general feasibility of sampling a phone’s sensors for HAR
using HTML5/JavaScript. However, the support has not
fully been implemented for all user agents/devices yet. Es-
pecially legacy devices suffer from low sampling rates or no
support at all, which is why it seems prudent to include
context sensitivity using progressive enhancement strategies.
Our future work will include the implementation of the full
framework, comparisons to native activity recognition ap-
plications regarding performance and accuracy, as well as a
user study. Also, the automatic training of user-personalized
classifiers will be examined, similar to ActiServ [2].

5. REFERENCES
[1] Recognizing the user’s current activity – android developers.

http://developer.android.com/training/location/
activity-recognition.html, visited 2013-10-18.

[2] M. Berchtold, M. Budde, D. Gordon, H. R. Schmidtke, and
M. Beigl. Actiserv: Activity recognition service for mobile
phones. In ISWC 2010. IEEE, 2010.

[3] M. Budde, M. Berning, C. Baumgärtner, F. Kinn, T. Kopf,
S. Ochs, F. Reiche, T. Riedel, and M. Beigl. Point & control
– interaction in smart environments: you only click twice. In
UbiComp ’13 Adjunct, 2013.

[4] J. Frank, S. Mannor, and D. Precup. Activity recognition
with mobile phones. In Machine Learning and Knowledge
Discovery in Databases. 2011.

[5] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity
recognition using cell phone accelerometers. ACM SIGKDD
Explorations Newsletter, 12(2), 2011.

[6] U. Maurer, A. Smailagic, D. Siewiorek, and M. Deisher.
Activity recognition and monitoring using multiple sensors
on different body positions. In Wearable and Implantable
Body Sensor Networks (BSN 2006), 2006.

[7] P. Vergori, C. Ntanos, M. Gavelli, and D. Askounis. The
webinos architecture: A developer’s point of view. In Mobile
Computing, Applications, and Services. 2013.

http://developer.android.com/training/location/activity-recognition.html
http://developer.android.com/training/location/activity-recognition.html

	1 Introduction
	2 Sensing Framework
	3 Feasibility Study
	4 Conclusions
	5 References

