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ABSTRACT 
During the vast trend of urbanization, mobile sensing in 
metropolitan area has become an emerging fashion and 
prevailing technology to monitor the environmental 
changes and human activities in the city scale.  In this paper, 
we propose a novel framework, namely, the Context-Aware 
Metropolitan Sensing (CAMS), to rise to the increasing 
challenges in context acquisition, context fidelity, context 
dynamics and context complexity. CAMS is an high level 
framework that focus on knowledge discovery among 
distributed or mobile users, and loose coupled with specific 
communication and networking technology. By a case 
study of Beijing road roughness evaluation, we propose 
decision-tree based machine learning algorithm to gain 
knowledge from 3-axis accelerometers and GPS receivers. 
The results show how the CAMS framework can be used to 
develop city-scale mobile sensing applications.  
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1. INTRODUCTION 
In the past few years, a new trend of urban or metropolitan 
sensing and people-centric sensor network has become a 
major driving force of ubiquitous computing and context-
aware applications. There have been many interesting 
applications utilizing context, many of them belong to 
Location Based Services (LBS).  

Sensor networks have been considered as a major enabling 
technology for realizing interactions between human 
perception and the physical world. We have seen oceans of 
demo systems and applications, which revealed people’s 
ingenuity and great advancements in many aspects of 
sensor network technologies. Cuff concluded that 
‘embedded networked sensing had successfully shifted 
from the lab to the environment, and there would be an 
unprecedented move to the metropolitan area, where 
citizens will be the source of data collection’ [1]. 

Towards a better understanding of the urban life, many 
research groups have been engaged in fine-grained 
monitoring of environment and people’s activities. Center 
for Embedded Networked Sensing at UCLA[2] focuses on 
participatory urban sensing which emphasizes the 
involvement of individuals and community in the process of 
data collection and storage(e.g. PEIR[3]). MetroSense 
project of Dartmouth College presents a series of 
prototypes(e.g. BikeNet[4], CenceMe[5]) for people-centric 
data gathering, mainly by mobile phones.  

Metropolitan sensing utilizes heterogeneous and distributed 
sensors to gain data about temperature, moisture, noise and 
air pollution. Spatial-temporal information which can be 
obtained from the GPS receiver is aligned to these 
environmental information for augmented perception and 
personal affair scheduling. However, great challenges still 
remain when we try to discover knowledge from data in 
metropolitan sensing systems. Henrichsen et al.[6] and 
Poslad[7] conclude the challenges in general applications 
respectively. In common, they use the concept context as 
‘any information that can be used to characterize the 
situation of an entity that is considered relevant to the 
interaction between a user and an application’[8]. Context-
aware system is basically considered as system that can be 
aware of, and adapt to its situation in its physical, technical, 
and personal environments. Considering the specific 
requirements of metropolitan sensing, we highlight the 
following four challenges that need to be considered. 

• Context Acquisition: In metropolitan sensing, sources of 
the information are embedded in the city-scale geometrical 
areas.  The technical challenges for the infrastructure is how 
to accomplish demanding data collection and transmission 
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Context acquisition acts as an enabling technology of the 
whole system, which includes local context acquisition and 
context sharing mechanism.  

- Local context acquisition: acquire data from sensors 
which are embedded in the portable devices or 
professional equipment. This process may entail many 
sub-processes such as sensor calibration and sensor 
configuration (e.g. to set the sample rate or trigger 
threshold of events).  

- Context sharing: in metropolitan sensing applications, 
the context of each user is quite limited in both 
temporal and spatial range. To achieve a global view of 
the urban area, users have to share information with 
others. Participatory context sharing will greatly 
enhance each individual’s priori knowledge and 
situation awareness. Basically, context sharing 
mechanism is constrained by network availability 
(either infrastructure-based, such as GPRS/3G, or 
short-range wireless communication technologies, such 
as Zigbee, WiFi, etc.) and community sharing 
policy(the social network). 

• STAGE II: Context management 

Context management includes sub-stages of filtering, 
composition and storage. 

- Context Filtering: data may be incorrectly, 
incompletely, imprecisely defined, determined or 
predicted. Filters only consider events within a certain 
range that adhere to context fidelity polices, which 
define the temporal granularity (duration and/or 
interval) and spatial granularity (absolute location or 
relative location) and accuracy. A major task of context 
filters is to deal with inconsistency in raw context from 
both local and remote users.  

- Context Composition: multiple contexts are always 
linked and interrelated. Context composition will play 
a key role in converting low-level contexts (such as 
location, time and identities) into higher-level contexts 
(such as where and when a party is held). Combining 
several individual contextual values may generate a 
more precise understanding of the current situation 
than taking into account any individual context. 

- Context Storage: includes both historical contexts and 
remote contexts, and these contexts are organized to 
support fast query-based retrieval. Life-cycle of context 
is important to maintain useful context and eliminate 
out-of-date ones. 

• STAGE III: Context Utilization 

Context utilization focuses on context discovery and 
adaptation. 

- Context Discovery: reveals the application goal and 
efforts to search and retrieve related current contexts to 
perform further processing. Discovery of context may 
require search algorithms to locate particular matches 

in a very large context dataset. Context matching may 
also need to use complex (sematic) metadata models 
that are able to undertake matches in heterogeneous 
context spaces.  

- Context Adaptation: performs the task of transition 
from the current context to the goal context. We may 
be satisfied when we see so many contexts about urban 
life created and retrieved, but it is really the relation of 
the current context to a goal context that is the essence 
of context-awareness. Machine learning algorithms 
will play key role in the knowledge discovery process. 

4. CASE STUDY: ROAD ROUGHNESS EVALUATION IN 
BEIJING 

 4.1 Overview of Road Roughness Evaluation 
Techniques 
Road roughness is a broad term that incorporates everything 
from potholes and cracks to the random deviations that 
exist in a profile. Detection of the road condition is 
important for safety and economic savings. To build a 
roughness index, existing methods of gauging the 
roughness are based either on visual inspections or using 
instrumented vehicles that take professional measurements. 
Nowadays, many smart phones, such as iPhone, are 
equipped with accelerometers and gyroscopes, and there are 
also built-in accelerometers in cars to improve suspension 
performance and increase ride comfort. 

González[10] proposes a method using acceleration 
measurements and Fourier analysis to calculate the Power 
Spectral Density (PSD) function of the surface. According 
to ISO 8608, It classifies the profile into ‘A’ (very good), 
‘B’ (good), ‘C’ (average), ‘D’ (poor) and ‘E’ (very poor) 
roughness indices. Liu et al.[11] presents an application 
procedure based on wavelet theory to offer supplementary 
information to a roughness index and provide additional 
information on the characteristics of the roughness profile 
of interests. Khoudeir et al.[12] suggests a method to 
characterize micro-roughness of road surfaces through 
image analysis. 

However, most of the methods using acceleration 
measurements cannot deal with the dynamic change of 
urban road profile. Real-time and distributed data are 
desirable to generate a global view of city roads status. 
Utilizing CAMS framework, we propose a new road 
roughness evaluation method, based on participatory urban 
sensing. 

4.2    Experiment Setup 
To monitor and annotate road roughness conditions, we 
adopt the following types of sensors in our experiment: 

- Accelerometers: collect the acceleration in three 
dimensions, while X-axis value reveals the accelerating 
or braking status, Y-axis value reveals the turn-left or 
turn-right actions, Z-axis reveals the vertical vibrations. 
In our experiments, we adopt a commercial device with 
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