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Abstract In this paper, we present a novel approach
for distributed recognition of collaborative group ac-
tivities using only mobile devices and their sensors.
Information must be exchanged between nodes for
effective group activity recognition (GAR). Here we
investigated the effects of exchanging that informa-
tion at different data abstraction levels with respect
to recognition rates, power consumption, and wireless
communication volumes. The goal is to identify the
tradeoff between energy consumption and recognition
accuracy for GAR problems. For the given set of activ-
ities, using locally extracted features for global, group
activity recognition is advantageous as energy con-
sumption was reduced by 10 % without experiencing
any significant loss in recognition rates. Using locally
classified single-user activities, however, caused a 47 %
loss in recognition capabilities, making this approach
unattractive. Local clustering proved to be effective for
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recognizing group activities, by greatly reducing power
consumption while incurring a loss of only 2.8 % in
recognition accuracy.
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1 Introduction

Context and activity recognition provide intelligent de-
vices in the environment with the ability to act proac-
tively in the interest of users [23]. Many of us now carry
around one or more intelligent devices constantly, and
the number of intelligent systems in our environment
such as entertainment systems, vending machines and
informational displays is steadily increasing [2, 29]. Im-
plicit pro-active interaction based on situational aware-
ness is increasingly more important in order to prevent
us from entering a state of permanent distraction and
informational overload [12]. This state is a result of con-
stantly having to administrate and respond to the myr-
iad of intelligent devices in our immediate environment
[3]. One vision within pervasive and ubiquitous com-
puting sees environments progressing from single-user,
private devices to include multi-user devices running
private applications for those users who are present. A
challenge then becomes not only recognizing the con-
text of the single user interacting with the device as with
mobile phones [3], but now attempting to recognize the
activity of a group of individuals interacting with the
system or the environment [13].

In this work we define multi-user activity recogni-
tion (MAR) as the recognition of distinct activities of
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multiple users over a period of time. Group activity
recognition (GAR) is the recognition of a single activity
for an entity consisting of multiple individuals (see
Section 2). The group activity is not necessarily the
same as the sum of the activities of the individuals in
it [16]. The activity or context of a group is a func-
tion of the activity or context of all individuals in the
group.

Wearable technology has been proven to be effective
for human activity recognition (HAR) [1, 3, 16] and
is ever more prevalent, and is therefore an attractive
platform for MAR and GAR as it is already ubiquitous.
Using a distributed wearable platform for both the
sensing and processing aspects of activity recognition
is advantageous in that it allows the system to operate
independently of existing infrastructure and therefore
widens the field of applications [15]. Furthermore, in
times of emergency, when GAR may be needed most,
the conditions of infrastructure are at their worst [7]. In
order to both combat the scalability challenges, and to
be robust to infrastructure collapses or partial break-
downs, methods for recognizing group activities using
the devices of the individuals within those groups are
advantageous. These devices are intrinsically wearable,
therefore motivating the field of GAR using mobile
devices with wearable sensing modalities.

When using wearable technology such as badges
[29], mobile phones [3], coffee cups [2, 13], etc. for
group activity or context recognition, it is inherently a
hierarchical problem, where data from wearable sen-
sors on multiple users must be aggregated in order to
infer the group context [16]. This poses a problem for
such systems, as energy storage is a very limiting factor
and reducing energy is a main priority [26]. Activity
recognition approaches must therefore also be acutely
aware of this issue and make every effort to reduce
their energy consumption footprint on the system as
a whole [12]. Preprocessing data locally reduces its
volume and therewith the energy required for trans-
mitting that data, but at the same time this process dis-
cards information which may be vital for classification
[22,25]. Transmitting unprocessed, raw data guarantees
that the maximum amount of information is available
for GAR, but the cost of communication is high. The
low-power requirements of mobile devices must now be
reconciled with the hierarchical nature of GAR, where
again a tradeoff between recognition rates and energy
consumption is evident.

The main contributions of this work are as follows.
A system for recognizing group activities using only a
distributed network of sensor nodes and mobile phones
is introduced, a sketch of which was already presented
[14]. A mobile phone is used as a central node for GAR,
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and wireless sensor nodes are attached to coffee mugs
(Smart Mugs) to monitor the activities of the individual
subjects. The Smart Mugs can process measured sen-
sor data locally to different abstraction levels before
forwarding that data to the mobile phone for GAR.
The capability of the system to handle real-world MAR
and GAR problems is, however, not evaluated here. To
the best of our knowledge, there is no other work that
describes an approach for GAR using wearable devices
for sensing and recognition.

An experiment was designed to create a simple col-
laborative GAR problem as it poses issues where nodes
must exchange information in order to infer group
activities (see Section 2). The experiment is used to
evaluate different levels of abstraction at which the
information exchange occurs in terms of its effects on
the distributed sensing (energy consumption), informa-
tion exchange (communication volumes) and recogni-
tion (recognition rates) systems. The goal is to iden-
tify which abstraction level is optimal for collaborative
GAR in terms of the energy savings and loss of recog-
nition values.

Different levels of data processing result in different
levels of abstraction [25], from low-level raw sen-
sor data to high-level single-user activity information
processed using single-user activity recognition (SAR)
techniques. The later approach introduces the problem
of having to doubly-label training data in terms of
single-user and group activities in order to train both
local SAR classifiers on the Smart Mugs and global
GAR classifiers on the mobile phone. The term local is
used to refer to processes which occur at a single node,
while global refers to processes which occur on the
mobile phone which has a global view of the network,
sensor data, and activities. Two methods for avoiding
the doubly-labeling problem are presented and evalu-
ated here: separate training sessions for local and global
activities, and using unsupervised clustering techniques.
These different modes of operation are evaluated in
terms of distributed energy consumption and GAR
rates in experiments with multiple subjects.

Here we present the results of that experiment in
detail, extending an initial publication [13]. Further-
more, we present a more advantageous unsupervised
learning approach, which solves one of the main prob-
lems of GAR using single-user activity information:
the doubly-labeling issue. Finally, the data set gathered
during the course of these experiments is published
(see Section 6) to enhance reproducibility and to make
this information available for future work within the
community.

We analyze the difference between multi-user and
group activity recognition in Section 2 and introduce
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a definition for these terms, and a categorization of
GAR and MAR approaches into cooperative and col-
laborative recognition problems. We then provide ex-
plicit, formal definitions of cooperative and collabora-
tive single-user, multi-user and group activity recogni-
tion problems. A brief survey of related work based on
these definitions and categorizations is then presented
in Section 3.

The rest of this paper is organized as follows: Section
2 provides a formal definition of SAR, MAR and GAR
and describes their characteristics. Related work is then
described in Section 3. Section 4 describes the GAR ap-
proach and the system proposed in this paper, followed
by a description of the experiment in Section 5. The
data set which represents a portion of the contribution
of this work is described in Section 6. Section 7 presents
results that are analyzed and discussed in Section 8. In
Section 9, we conclude the paper and present plans for
future work.

2 Single-user, multi-user and group activities

In this work we differentiate between single-user activ-
ity recognition (SAR), multi-user activity recognition
(MAR) and group activity recognition (GAR), which
are all forms of human activity recognition (HAR).
The research here is focused on wearable systems, but
results should be generalizable to other approaches
such as video or audio recognition systems. These
terms, specifically MAR and GAR, have been multiply
defined across related work, sometimes synonymously
[28] while other times defined in a contradictory man-
ner by different works (compare [16] and [22]). Here a
new definition of MAR and GAR is presented with a
further classification into collaborative or cooperative
recognition.

For all types of HAR, labels from the label space
are usually assigned to areas of the activity space in
such a way as to make the activities for all labels
mutually exclusive. Although this does not have to be

Fig.1 An example of single,
group and multi-user activity
recognition for a group G
consisting of three subjects
Sl, Sz, S3 € G]. Individual
activities are chopping,
cooking, and making coffee,
while group activities are
which meal is being prepared

a) Single-user Activity
Recognition

b) Multi-user Activity
Recognition

c¢) Group Activity
Recognition

G,={breakfast; lunch; dinner}

S,={chopping; cooking; coffee}

S,={chopping; cooking; coffee}
S,={chopping; cooking; coffee}
S,={chopping; cooking; coffee}

the case, overlapping activities create a different kind
of recognition problem which must be addressed.

The spaces for activities and for labels are infinite,
and the mapping between them is subjective [23].
For example, when observing Fig. la, one person
may consider it “chopping” and another considers it
“cooking”, and two people may describe the activity
“making coffee” very differently. Therefore defining
single-user, multi-user and group activities by trying
to make distinctions using labels or activity names is
not a valid approach. We can, however, differentiate
between these concepts by examining what is necessary
in order to infer labels based on the physical charac-
teristics of the behavior. In other words, there is no
fundamental difference between single-user, multi-user
and group activities per se, but rather the difference
arises only when attempting to distinguish activities
from each other in the process of recognition (SAR,
MAR and GAR).

2.1 SAR, MAR and GAR problems

Single-user activity recognition (SAR) is the problem
of recognizing what a user is doing based on sensor
measurements taken from that user’s body, possessions
or environment [16]. This can be seen on the left side of
Fig. 1a, where the activities of the single user (subject
1is “chopping” vegetables) are being monitored. Here,
SAR is only concerned with monitoring environmen-
tal parameters directly influenced by that subject, e.g.
body-worn sensors or utensils which they are using.

Multi-user activity recognition (MAR) is the recog-
nition of separate activities of multiple users in parallel,
where two or more users are involved [16]. This is
demonstrated in Fig. 1b, where the system recognizes
several activities, one for each subject.

Group activity recognition (GAR) is the process of
recognizing activities of multiple users, where a single
group activity is a (complex) function of the behavior of
each and every user within the group [13, 15]. The ac-
tivity of the group (crowd) can be observed as spontan-
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ious emergent behavior, generated from the activities
and interactions of the individuals within it [6, 27, 30].
Figure 1c shows this where without knowledge of all
of the users, it is improbable that the system will infer
the correct activity, as the activities of each user are
ambiguous with respect to the group activities (e.g.
“chopping” could be preparation of any meal). Only
the 3-equation-problem given by observing all subjects
provides enough evidence for accurate inference.

In the same way that multiple sensors placed on the
human body, each sensing only “arm”, “leg” or “hip”
parameters can be used to infer the activity of the entire
person (SAR) [1, 3], we propose that sparse sensing
of the actors within the group can be used to infer
the activity of the group as a whole [13, 15]. This is
analogous to treating the group of individuals as an
organism in and of itself, rather than the sum of its
parts. Although group activities are to the individuals
in the group as single-user activities to the limbs of the
user, the same methods can not necessarily be applied.
Interactions between humans are far more complex
than those between e.g. “knee” and “hip,” and there-
fore their relationship to the behavior generated is far
more complex as well. Further research is required to
understand what can and can not be used from SAR
for GAR.

2.2 Cooperative and collaborative recognition

For MAR and GAR problems we define two distinct
classes: cooperative recognition problems and collab-
orative recognition problems. Cooperative and collab-
orative here do not refer to the type of human in-
teractions occurring between the the users, but rather
the type of interaction required between the subject
activity models in order to recognize behavior.

Cooperative recognition problems are those in which
only sensors local to a single individual are required to
infer the activity. Based on these sensors, a model can
be constructed in order to recognize behavior based on
readings. This can be conducted independently of other
individuals in the environment. The activity models,
however, may be imperfect which can cause errors
in recognition. Using information about neighboring
activity (e.g. if one subject is “chopping” then other
subjects may be more likely to be “cooking”) can help
to correct these errors, therefore the cooperative nature
of the recognition approach.

Collaborative recognition problems are those in which

the activity being performed is fundamentally depen-
dent on information from multiple subjects. This class

@ Springer

of problems requires that data from multiple individ-
uals be fused in order to infer their activity, while not
restricting whether or not it is one activity per user
(MAR) or one activity per group (GAR). Since recog-
nition is not possible without fusion, meaning activities
cannot be modeled without observing multiple users,
this class is referred as “collaborative.”

An example Imagine an indoor track and field area
in which we are monitoring activities. Now imagine a
single subject using that track whose activity we are
monitoring, and let’s say he or she can only perform
one of three things: “run,” “walk” and take a “break”.
This is a SAR problem since we are monitoring a single
subject (see Fig. 1a) and cooperative problem, since
sensor information from that user is used to infer their
activity. If they were to be wearing multiple sensing
devices, where each device is not capable of inferring
activity on its own, we could then refer to this as being
collaborative SAR problem.

Now imagine the same situation but one more sub-
ject enters the track, where the two do not know each
other, are of different skill levels, etc., so that they are
not in any way interacting. This is now a MAR problem
(see Fig. 1b) and a cooperative problem since we are
recognizing individual activities for multiple subjects,
where the dependence of each recognition problem is
only on the sensors of that subject.

Going one step further, imagine the same situation,
except where the two are now acquaintances and take
a “break” together at some point, during which we
don’t know what they do, but only that they do it
together. Now the system must recognize “run,” “walk”
and “break” for both subjects (MAR), but because we
cannot be sure if they are taking a break we must now
observe both subjects in order to find out, making this
a collaborative MAR problem. Notice how two of the
activities “run” and “walk” do not change, but depend-
ing on what you are trying to distinguish them from, it
is either a collaborative or a cooperative problem.

Now imagine the same situation with more users
(no effect with respect to MAR/GAR, cooperative/
collaborative), where they are all members of a team,
meaning all individuals perform one of the activities in
unison. Combining all activities together where when
every one is walking the single group activity is “walk”
converts a cooperative MAR problem in a GAR prob-
lem due to the fact that we are recognizing a sin-
gle activity for the group (see Fig. 1c). Similarly, the
group activity could be obtained by observing only one
subject, since what he or she is doing is also what
the group is doing, therefore it is a cooperative GAR
problem.
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Finally, observing the last example where a team
performs the activities “run,” “walk” and “break,” and
changing it such that the team takes breaks together but
each individual has a varying skill level such that the
activity “walk and run” is possible, this fundamentally
changes the nature of the recognition problem. Now,
all members of the group must be observed since it
cannot be assumed that if one subject is walking that
the group is walking and so on. By adding one activ-
ity, the problem becomes one of collaborative GAR.
Once again notice that the difference between coop-
erative and collaborative problems is not an intrinsic
property of the activities, but rather of the recognition
problem.

2.3 Formalization

When observing the definition of MAR vs. GAR and
cooperative vs. collaborative from a Bayesian proba-
bilistic viewpoint, we can now formalize it using the
prior and belief networks. Figure 2a shows the factor
graph for SAR, where the hidden variables (activity
states) for subject 1 x; € X are governed by a prior
Pr{X} and are connected to the observable variables
(sensors) y; € Y by the belief Be{Y|X}. Similarly, Fig.
2b shows the factor graph for the prior and belief func-
tion for collaborative MAR, showing the conditional
independence of both belief functions and priors be-
tween hidden and observable variables. Figure 2c shows
the belief and priors for collaborative MAR, where
subject activities are dependent on information of other
subjects.

Figure 2d shows the factor graph for cooperative
GAR. The grayed relationships indicate a “one-of-
each” relationship between the hidden variable and
the observable variables, meaning that the posterior

p(x]y) can be evaluated given any y. Collaborative
GAR is shown in Fig. 2e, where the hidden variables
are dependent on all observable variables.

2.4 Discussion

This begs the question, why are these distinctions nec-
essary? Usually, they are not of importance to the sys-
tem used to recognize these activities, as posteriors for
hidden variables are inferred using priors, belief func-
tions and observed states of all observable variables.
These dependencies can also be modeled explicitly in
order to improve system performance [28].

In this work we address approaching this problem
from a distributed point of view, where the distrib-
uted wireless sensing network is also the platform con-
ducting recognition. Each dependency requires com-
munication between nodes, as they would otherwise
not have access to the states of remote variables for
inference. Interdependency between users for infer-
ence must be explicitly modeled and accounted for,
and a distinction between which types of problems
require this communication and which types do not
must be made.

In summary, MAR is used where the goal is to
obtain the activities of multiple individuals in paral-
lel, where GAR is used to recognize the activity of a
group as an organism, often where the activity of the
group is not directly evident when observing the activity
of the individuals independently: emergent behavior.
Both MAR and GAR can either be cooperative or
collaborative, depending on the activities recognized.
For cooperative problems, knowledge of other subjects
can help to reduce error caused by model errors or sim-
plicity. Collaborative issues, however, require exchange
of information about other group members in order to

SAR

a>@

Multi-User Activity Recognition Group Activity Recognition
Cooperative Collaborative Cooperative Collaborative
L HEE EEE L L HD)
(:;)(;)(;) (:)(:) d) (:;) e)
- - - Be{YIX}

®

oIo16 @@Qw

_ I ¥
B OO

Fig. 2 Factor graphs for belief Be{Y|X} and priors Pr{X} over
hidden variables (activities) xi, x2, x3 € X and observable vari-
ables (sensors) yi, y2, y3 € Y for a Single-user Activity Recog-

nition (SAR), b cooperative Multi-user Activity Recognition
(MAR), ¢ collaborative MAR, d cooperative Group Activity
Recognition (GAR) and e collaborative GAR

@ Springer



Mobile Netw Appl

model the activities. In the remainder of this work we
focus on collaborative recognition problems which pose
issues for distributed, in-network recognition which are
novel. Specifically, the level of abstraction at which
the information exchange occurs is evaluated in terms
of its effects on the distributed sensing (energy con-
sumption) and recognition (accuracy) systems, as well
as the information exchange (communication volumes)
between them.

3 Related work

The majority of all context and activity recognition
work is focused on human subjects and concentrates
on single-user activity and context recognition. Tradi-
tionally, this is conducted using body-worn acceleration
sensors [1, 12] which forward sampled data to a central
server for classification. Other approaches range from
embedded recognition [12, 26], where emphasis is on
the tradeoff between energy expenditure and recogni-
tion quality, to server based approaches which optimize
classification results using crowd-sourcing [3].

First simple attempts at recognizing the activity of
a group as a whole were pioneered with the Active
Badge [29] and MediaCup [2] projects, where the

status of a user (including meetings or gatherings)
was updated based on their location and the loca-
tion of others. These approaches where not learning-
based, but rather static code which recognized activities
mostly based on location, proximity, and some sensor
measurements.

Other approaches use audio classification to recog-
nize multi-user group activities, such as concurrent
chatting activities [18], or for classifying roles of individ-
uals in conversations [9]. These methods have proven
effective, but rely heavily on infrastructure for recogni-
tion. Theoretically, embedded GAR approaches using
audio sensors would be possible [26], but the authors
are unaware of research in this direction.

Camera-based systems are well suited to collecting
information about multiple individuals within the field
of vision. This advantage has been put to use for the
purpose of group activity recognition, for example for
monitoring activities of groups of individuals in a prison
yard [8] or cargo and logistics activities [11, 21]. An-
other great example of uniquely group-related activi-
ties, is recognition of American Football plays based
on TV feeds [20]. There, Li et al. track individual tra-
jectories and activities of single users, and then use this
information to recognize which play is being orches-
trated. The large drawbacks of video-based systems is

Table 1 Analysis and comparison of existing multi-user and group activity approaches

Reference Application Activity Dependency  Architecture  Sensor Issues
domain type type tech.
Chang et al. 8] Prisoner activity GAR Collaborative  Centralized Video Dependent on infrastructure,
recognition video requires instrumentation
Want et al. [29] Office activities MAR/ Collaborative  Centralized  Multiple = Dependent on infrastructure,
GAR static logic, not capable
of learning, domain specific
Beigl et al. [2] Office activities MAR/ Collaborative ~ Centralized =~ Wearable Dependent on infrastructure,
GAR static logic, not capable
of learning, domain specific
Hsu et al. [18] Human GAR Collaborative  Centralized Audio Dependent on infrastructure,
conversation domain specific
Wirz et al. [30], Pedestrian MAR/ Collaborative  Centralized ~ Wearable Domain specific, focused
Roggen et al. [22] flocking GAR on group affiliation
Hwang et al. [19] Behavioral MAR Collaborative ~ Centralized =~ Wearable  Application-specific outlier
singularities detection
Gu et al. [16], ADLs in home MAR Collaborative  Centralized Wearable Dependent on infrastructure,
Wang et al. [28] applicability for GAR unclear
Li et al. [20] American football GAR Collaborative  Centralized Video Dependent on infrastructure,
plays video requires instrumentation
Gong et al. [11], Logistics and MAR Cooperative Centralized  Video Dependent on infrastructure,
Loy et al. [21] public places video requires instrumentation,
highly domain specific
Dong et al. [9] Conversational MAR Cooperative ~ Centralized  Audio Dependent on infrastructure,
roles application for HAR unclear
Present work Generic (office) GAR Collaborative  Distributed Wearable
[13, 14] activities

@ Springer



Mobile Netw Appl

that they require pre-instrumentation of recognition
environments, and commonly require infrastructure to
connect sensors and processing architectures.

Research into MAR and GAR using wearable sen-
sors has only recently been introduced to the scientific
community, an overview of which can be found in
Table 1. Gu et al. [16] and Wang et al. [28] combine
patterns of individual activities to recognize concurrent
multi-user activities using probabilistic methods. Here
the activities which are recognized range from single-
user activities as well as concurrent and conflicting
multi-user activities, making this approach collabora-
tive in nature.

Wirz et al. approach recognition of cluster forma-
tions and flow patterns in groups of pedestrians [30].
The work presented here expands on that done by
Roggen et al. [22], where the concept of “behav-
ioral primitives” are introduced as single-user activities.
Here, group membership for each subject is monitored
(MAR), but also crowd behavior is addressed (GAR),
both of which can only be evaluated with knowledge of
other group members (collaborative). Similarly Hwang
et al. track behavioral singularities in children on field
trips, where the behavioral singularity is tracked for
each child (MAR), but can only be calculated in com-
parison with other subjects (collaborative).

Sigg et al. [25] researched the optimal context ab-
straction level for prediction of future contexts. This
was also addressed for a different application, namely
sensor control for embedded SAR using prediction
[12]. Since GAR using wearable sensors is inherently a
hierarchical problem, these same issues are also present
here as well, but with focus on GAR instead of context
prediction. A case study on GAR to evaluate the op-
timal context abstraction level for GAR using sensors
from wearable devices was presented in a preliminary
poster abstract [14]. A requirements analysis for dis-
tributed recognition in peer-to-peer networks of mobile
devices was also presented [15]. Preliminary results

Fig. 3 Left: the smart mug
with an acceleration sensor,
jenPart node and battery.
Right: network topology of
the group activity recognition
system and abstraction level
experiment

Smart Mug
ADXL335

B .“‘. eLocal feature extraction
‘onP attery eLocal clustering
kjen art | ; sLocal activity recognition

provided insight into the power-accuracy trade-off for
GAR, and uncovered several novel research questions
[13].

4 System design

The system used here was made up of a wireless
sensor network and a mobile phone. Wireless sensor
nodes equipped with 3D acceleration sensors were at-
tached to coffee mugs in a university/office setting. The
nodes sampled activity and context data at the mugs,
processed this data to a specified local abstraction
level, and then forwarded it to the smart phone for
further classification to the group activity as shown in
Fig. 3.

The smart phone was tasked with recognizing group
activities based on the data sampled by the wireless
nodes on the coffee mugs. These nodes forwarded ei-
ther raw sensor measurements, extracted sensor signal
features, local clustering information, or locally recog-
nized single-user activities to the smart phone. The
different modes were evaluated in terms of power con-
sumption and recognition accuracy. The classifiers used
in this paper are the k-Nearest-Neighbors (kNN) (k =
10, Euclidean distance, no feature weighting), Decision
Tree (DT) (C4.5), and Naive Bayes (nB) (no kernel
estimation, single Gaussian, no covariance modelling)
algorithms, selected for their simplicity for embedded
purposes.

A hard K-Means clustering algorithm was used
which outputs a single cluster candidate (top-1) for
each vector, and uses subtractive clustering to identify
the number of clusters present [13]. Each node out-
puts the index of the cluster which is identified given
the k-Means clustering algorithm. These values are
then fused by the mobile phone into a single group
activity using trained classifiers. Since clustering algo-
rithms do not require labels for training, local labels

Coffee Cup/
jenPart WSN

Mobile Phone

b
IEEE 802.15.4 ﬁ

System:

sjenPart sensor node
*ConTiki OS

Tasks:

*Sensor sampling

System:
*NeoFreerunner
*DebianLinux

Tasks:

*Global multi-user group
activity recognition
*Global and local training
*Visualization
*Administration
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Fig. 4 State charts for the Group Activity

Communication

three different system modes Recognition Mode ~Smart Mug Mobile Phone Volume
for GAR with associated Q) '
approximate communication Raw Sensor Feature
volumes Data Sampling Extraction Group AR
— /)
'
—
o N % )
Feature- Sensor Feature
Based L Sampling Extraction Group AR Medium
J/
—
~ '
'
- N g ~—
Activity- Sensor Feature Local AR/
Based L Sampling Extraction Clusterlng Group AR
J/
q -

are not required for GAR, making these approaches
advantageous.

Here a second method for evaluating the poten-
tial of unsupervised clustering as a method of skirting
the doubly-labeling issue was investigated. Expecta-
tion maximization (EM) for Gaussian mixture models
(GMM) [4] was used to cluster the data and a soft
clustering approach was used as it has been shown to be
advantageous for other approaches [5]. The Gaussian
mixture is given by:

K K
= anP(ka, Yr), Where an =1

k=1 k=1

p(x) (1
For each Gaussian component of the GMM, the proba-
bility that the vector was generated by that component
is calculated. This probability is then normalized and
output as the feature indexed by that component. For
example, if training of one node yields a 3-component
GMM, the output vector is then of length 3, where the
kth feature is the posterior for the kth component of
the GMM given the feature vector x, or p(ug, Xk|x).
The wireless sensor nodes used were jenParts [24]
from the open-source Jennisense Project.! The nodes
are based on the JENNIC JN5139 wireless micro-
processor, the ConTiki operating system [10], a bat-
tery and an analog 3D acceleration sensor.> The nodes
sample the sensors at a rate of 33 Hz and segment the
sample data into windows (1 window = 16 samples ~
250 ms with 50 % overlap). Based on the operational
mode, the windows are then processed and forwarded
to the Neo: either the raw sensor data is forwarded
(Raw Data mode, low-level data [25]), or the sen-
sor signal features mean and variance are forwarded

IThe Jennisense Project: http:/github.com/teco-kit/Jennisense/
wiki.

2ADXL335 3-Dimensional Acceleration Sensor: http:/www.
analog.com.
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(Feature and Training mode), or single-user activity
information from a classifier or clusterer is forwarded
(Classification mode, high-level data [25]).

A Neo Freerunner’ was connected to a jenPart
bridge in USB host mode for communication with the
Smart Mugs. The Neo serves as a mobile platform
for classifying the group activity based on the data
aggregated from all nodes in the WSN. This involves
a training mode and a classification mode for the global
classifier. At training time, a vector consisting of data
from the local nodes (either raw, features, clusters or
classes) and a global group activity label is input into
the global classifier. In classification mode, an unla-
beled data vector consisting of the local data from the
distributed nodes is input into the classifier, which then
outputs the classification, or group activity estimation
for that vector.

The Neo also serves as a classifier training platform
for the mugs in the WSN. Following the approach
presented by Berchtold et al. [3], after being set in
training mode by the Neo, each mug gathers data and
forwards it to the Neo along with a local annotation
indicated by segmenting activities using the button on
the jenParts. Once this process is complete, the Neo
trains the selected classifier, segments the trained clas-
sifier into packet-sized chunks, and sends these chunks
sequentially to the nodes in a JSON format. The Mugs
are equipped with a JSON interpreter which then re-
constructs the classifiers locally and places them in
memory so that they can be executed as a module.

For all wireless communication tasks, the data is vital
at the receiver. Wireless communication must either
be designed in a reliable fashion, or measures must
be taken to reconstitute missing data, although these
questions are outside the scope of this work. For this
experiment the system was designed such that packet

3http://www.openmoko.org/.
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loss was not an issue under the controlled conditions of
usage, but in a real deployment this must be addressed
(see Figs. 3 and 4).

5 Experiment

This experiment was designed to evaluate different
levels of data abstraction carried out by the mugs in
terms of energy consumption, communication volumes
and GAR rates. To this end the experiment represents
a collaborative GAR problem where single-user activ-
ities map to group activities in such a way as to be
ambiguous for individual subjects, but explicit when
observing all subjects (see Section 2). Processing data
to the activity abstraction level [25] poses the problem
of having to doubly-label the training data in terms
of local, single-user activity labels and global, group
activity labels. This must either be done using video
recordings and offline annotation (time consuming) or
multiple annotators in real time, both of which are too
elaborate to allow easy deployment in new scenarios.

To counteract this, two methods of skirting the
doubly-labeling issue are employed and evaluated.
First, local classifiers and global classifiers are trained
in two sessions where each session must only be la-
beled with local or global activities respectively. Sec-
ond, local activity classifiers are replaced with a hard,
top-1, unsupervised k-means clustering, and soft, prob-
abilistic clustering [5], which does not require local
activity labels, and can therefore be trained on the
same data basis as the group activity classifier. Al-
though the system was implemented on the distrib-
uted heterogeneous platform, the classification results
were generated offline using the WEKA toolkit [17]
for analytical purposes but were cross-checked with
online results.

5.1 Activity recognition experiment

During the course of this experiment, three subjects
performed seven different activities, three of which
were group activities and four of which were single-
user activities involving the Smart Mugs. In total, over
45 min of data were collected, making over 22,700
sample windows, although some data was discarded at
random to ensure that experimental data was indepen-
dently and identically distributed (i.i.d.). The experi-
ments were conducted in a meeting room in a university
setting over the course of a single day. In the first phase,
local classifiers were trained and evaluated, followed by
the global classifiers in the second.

5.1.1 Phase 1: local single-user classifiers

In the first phase of the evaluation, each user performed
a set of activities, each one for a duration from ap-
proximately 2-15 min with the mug in training mode,
meaning features and labels were extracted locally and
uploaded to the Neo. The activities were local to the
mugs, and were not performed as part of group activi-
ties, as doubly labeling local and group activities in real
time is impractical. The local single-user activities were
as follows: the subject has placed the mug on the table
(or other surface), the subject is holding the mug in
their hand, the subject is drinking from the mug, and
the subject is gesticulating.

After each activity was performed for the specified
period of time, a button press on the node updated the
label on the feature vector sent to the Neo and the
next activity was performed. The first half of the data
generated in this phase was used to train the local clas-
sifiers, and the second half was used to evaluate their
performance. After all local activities were performed,
the local classifiers were trained and communicated to
the Smart Mug using JSON packets. The procedure of
the process conducted in phase 1 is displayed in the
upper portion of the sequence diagram in Fig. 5.

5.1.2 Phase 2: global group training and evaluation

The evaluation of the global classifier was conducted
offline using the data generated in this phase, where
again half of the data was used for training and the
other for performance evaluation. The subjects con-
ducted the following activities together for 4-5 min
each using the same mugs they trained in the previous
phase: Meeting, Presentation (users 1, 2 and 3) and
Coffee break. The mappings of group to single-user
activities are as follows: meeting consists of all subjects
either setting their mugs on the table, holding them in
their hand or drinking. In a presentation one subject
will be gesticulating or holding their mug while others
are either holding, drinking from, or have set the mugs
down, and in a coffee break all are either holding,
gesticulating with, or drinking from their mugs.

During this period, the nodes transmitted the full
locally extracted feature vector, as well as the local clas-
sifications of the single-user activities listed previously.
The raw sensor data was ignored for reasons which
will be explained later. The process flow for phase two
is shown in the lower portion of Fig. 5 where feature
vectors and local activity classifications are transmitted
simultaneously to train global classifiers for each data
type respectively.
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Fig. 5 Sequence diagram for
the two-phase group activity
recognition experiment
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5.2 Power measurements

The power consumption of each device was measured
by placing the node in serial with a low error toler-
ance resistor and measuring the drop in voltage across
the resistor. For each of the modes (raw sensor data,
extracted feature data and classifier/cluster data) the
average rate of consumption and the amount of en-
ergy consumed was calculated. The amount of energy
consumed over the period of time beginning at £y and
ending at ¢; is then given by le‘ Viupply X Lsupply dt =

[f)' Visupply X Z::: dt where Vypply is the supply voltage,
Lsupply 1s the current drawn by the node, which is given
by the voltage drop (Vimess) Over the measurement

resistor with resistance Rpyeas-

5.3 Raw data issues

Since the features calculated by the mobile phone and
the distributed nodes are identical, the recognition rates
for both modes would be identical as well. Theoreti-
cally, the Neo is capable of calculating far more com-
plex and extensive feature sets than the sensor nodes,
meaning that recognition rates for the raw data phase
could be higher than for locally extracted features. That
certain features provide better or worse recognition
values is however a known fact [12], and the field of fea-
ture selection is a different area of research, making this
comparison out-of-scope in the context of this work.
For this reason, the raw data phase was only used to
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evaluate data volumes and energy consumption rates,
and not to compare classification values.

6 The data set

One of the most difficult and time consuming steps
in HAR research is the collection of a data set for
evaluating hypotheses and algorithms. Publishing these
experimental data sets is a great step towards increas-
ing reproducibility within the research field of activity
recognition. Without this, progress in the field is slowed
as scientist must redundantly record private data sets
independent of each other, and the effort required for
reproducing published results is prohibitive. For these
reasons, part of the contribution of this publication is
the data set used for evaluating this work.

The data set has been made available online.* All
data has been published in the .ARFF file format for
compatibility with the WEKA toolkit [17]. The files
contain features generated over the sensor data streams
for the two phases of the experiment. The raw sensor
data was not transmitted in order to reduce the volume
of communication on the wireless channel, avoiding
collisions (causing possible loss of data) and freeing
up bandwidth. The root folder contains two folders
/local/ and /global/, which correspond to Phase
1 and Phase 2 respectively.

4http://www.teco.edu/gordon/GAR/data_set.zip.
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6.1 Data set from phase 1

In the folder /1ocal/, there are two files for each user,
one containing training data and one containing testing
data. Each file contains a set of vectors of length 7, each
containing the average and variance for each axis of the
accelerometer, and an activity label. The activities in
these files are the local single-user activity labels from
Phase 1. The identity of each feature in the vector is
given by the header of each file, for example:

@relation subject_1_train

@attribute mean_x numeric

@attribute mean_y numeric

@attribute mean_z numeric

@attribute var_x numeric

@attribute var_y numeric

@attribute var_z numeric

@attribute label{table,wave,drink,hold}
@data

6.2 Data set from phase 2

Folder /global/ contains the data from Phase 2
of the experiment. In the folder /global/single
vectors/, the files features_train.arff and
x_test.arff contain the combined data for all three
subjects in one single vector. These vectors have a
length 19, with 18 features (six from each subject) and
activity label. The labels here are Phase 2 activities, i.e.
group activities. Again, the identity of each dimension
of the feature vector is given by the header.

Local single-user classification vectors from from
Phase 2 are stored in six files in the folder /multiple
vectors/. The file names begin with the classifier
name (j48, knn, nb)followedby_train.arff or
_test.arff. Each dimension in the vector represents
the activity of the subject indexed by that dimension.
These are generated by classifying each vector of the
global feature data with the classifiers trained using
the data from Phase 1. The value of each position is
a Phase 1 single-user activity, where the labels in this
file are group activities. Since no doubly-labeling was
done, information about the exact correctness of these
classifications is not known.

The data set presented here has been normalized
using a min-max normalization. The minimum and
maximum cannot be taken from the entire set. The
testing data is used to simulate and evaluate online
operation of the system. This data would therefore not
be available at the point where the min and max values
have to be fixed for the system. In order to correctly
model this, the minimum and maximum values for
normalization where acquired from the training data
only, and used to normalize the entire data set.

7 Results

The results are two fold, first the classification rates for
local and group activities are presented, followed by
the evaluation of the communication load and power
consumption of the nodes. The implications of these
results and the insights they provide into the field of
collaborative GAR will be discussed in Section 8.

7.1 Classification results

The classification results will be presented in two parts.
First the local single-user classification rates achieved
by the mugs themselves of their local activities are pre-
sented, followed by the recognition rates of the global
classifier for GAR based on local features and local
activities will be presented.

7.1.1 Phase 1: local classification

In phase 1 the mugs were trained using the following
four classes: subject has set the mug down, subject is
holding the mug, subject is drinking and subject is ges-
ticulating. Table 2 displays the results of the evaluation
of the local classifiers trained in phase 1 of the experi-
ment. The accuracy, precision, recall and F-measure of
each mug, as well as the average over the three mugs is
displayed. All classifiers for local, single-user activities
performed at around 95 %, where minimal variance
across mugs, activities and classifiers was observed.

Table 2 Classification rates for local single-user activity recognition

Data basis C4.5 Decision tree k-Nearest-neighbors Naive-Bayes

Acc. Prec. Rec. F-meas. Acc. Prec. Rec. F-meas. Acc. Prec. Rec. F-meas.
Node 1 0.976 0.976 0.976 0.976 0.971 0.972 0.970 0.971 0.985 0.985 0.985 0.985
Node 2 0.948 0.947 0.947 0.947 0.936 0.941 0.935 0.938 0.906 0.910 0.905 0.908
Node 3 0.951 0.951 0.951 0.951 0.955 0.955 0.954 0.955 0.932 0.940 0.932 0.936
Average 0.958 0.958 0.958 0.958 0.954 0.956 0.953 0.955 0.941 0.945 0.941 0.943
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Table 3 Classification rates for global group activity recognition

Data basis C4.5 Decision tree k-Nearest-neighbors Naive-Bayes

Acc. Prec. Rec. F-Sc. Acc. Prec. Rec. F-meas. Acc. Prec. Rec. F-meas.
Features 0.962 0.962 0.962 0.962 0.894 0.900 0.896 0.898 0.565 0.612 0.575 0.593
Soft clust. 0.935 0.919 0.931 0.925 0.914 0.904 0.892 0.898 0.569 0.646 0.753 0.695
Hard clust. 0.767 0.772 0.656 0.709 0.767 0.764 0.662 0.710 0.716 0.624 0.561 0.591
Activities 0.507 0.531 0.516 0.524 0.424 0.557 0.429 0.485 0.491 0.514 0.495 0.505

7.1.2 Phase 2: global classification

Similar to phase 1, the global GAR classifier used half
of the data generated in phase 2 for training and the
other half for classifier evaluation. Table 3 displays
the results of the evaluation of the global GAR clas-
sifiers from phase 2. Each row of the table represents
a different data abstraction level of the mugs: either
feature transmission, transmission of local activities
(the local classifier algorithm is always the same as
the global one, e.g. the first column is local single-
user DT, with a global GAR DT), or transmission of
local clustering results, either soft or hard. In total 12
global GAR classifiers were trained and tested, three
classifiers (DT, kNN, nB) for each type of local data
abstraction.

Table 3 indicates that local single-user classification
provided poor results with a accuracies of 51 % (DT),
49 % (nB) and 42 % (kNN). Local hard clustering
provided better GAR results, with accuracies of 77 %
(DT, kNN) and 71 % (nB). Local soft clustering re-
sulted in a variance across different classifiers, achiev-
ing recognition rates of 94 % and 91 % for the DT and
kNN classifiers respectively, but only 57 % for the nB
classifier (see Section 8 for a details). The best results
were achieved using local features and a DT classifier
(96 %), where the kNN algorithm achieved relatively
high recognition rates (89 %), while the nB classifier
was only able to achieve GAR with an accuracy of 56 %
(compare with 33 % at random).

7.2 Data transmission and energy consumption

In order to analyze the requirements of the three
different system modes in terms of resource consump-

tion the nodes were monitored over different modes
of operation. The effects of each mode was analyzed
in terms of communication time and volume as well
as energy consumption. Table 4 displays the amount
of time required for communication per second (7};)
and the amount of data communicated per second for
each node. The results indicate a drop in data volume
of 73.5 % between transmitting raw data and features,
88.5 % between features and classes/hard clusters,
and a 96.9 % drop in the amount of data commu-
nicated from raw data mode to local context classifi-
cation mode. Values for soft clustering are approximate
as they vary across nodes depending on the number of
Gaussian components in the GMM. The values shown
in Table 4 are achieved using linear approximation
based on the average data volume per node.

During the course of these experiments, the energy
consumption rates of the different devices were also
monitored. Table 4 displays the results for the energy
measurements for both the mug hardware and the Neo
mobile phone as they carried out the necessary opera-
tions. The results indicate a decrease in average energy
consumption (Avg(P)) at the mugs of 1.4 % from raw
data to feature modes, a decrease of 4.5 % from feature
mode to classification mode, and a total drop of 5.8 %
from raw data to classification mode. For the Neo,
a drop of 2.7 % in average energy consumption was
registered from raw data to features, a drop of 1.33 %
from features to classes, and a total drop of 4.0 % from
raw data to classification mode.

Due to the difference in the the ratio of operational
to transmission power consumption between the 2 de-
vice types, the energy consumption due to transmission
could only be directly measured accurately at the mugs,
but not at the Neo. The right-most column in Table 4

Table 4 Communication

Mode Data volume Neo Freerunner ~ Wireless node (Mug)
volumes and power
consumption results (Bfs) Avg(P) (W) Avg(P) (mW) Erx (mJ)
Raw data 404.25 1.771 24.574 1.012
Features 107.25 1.723 24233 0.909
Soft clusters ~ Variable (avg. 24.75) Variable (~ 1.703) Variable (~ 23.296) Variable (= 0.648)
Hard clusters  12.375 1.700 23.140 0.605
Local activities 12.375 1.700 23.140 0.605
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indicates the amount of energy consumed by a node
for the purpose of wireless communication each sec-
ond (Ery). This indicates a 10.17 % drop in energy
consumed when transmitting features compared to raw
data, and a decrease of 33.44 % from features to classes,
with a total decrease of 40.22 % from raw data to
classes.

8 Analysis and discussion
8.1 Using single-user activities for GAR

One of the most important issues is selecting local
activities relevant to discrimination between the global
group activities. Here the experiment was designed to
avoid this problem by engineering a collaborative GAR
problem which can be directly mapped onto the single-
user activities in order to evaluate the effects of the
abstraction level, rather than the scenario. For real
scenarios, either intuitive or experimental knowledge
of the relationship between group and individual activ-
ities is required for activity selection, otherwise global
recognition rates will deteriorate.

In this experiment, global classifiers were trained
using the output of the local classifiers in the local
classification mode, meaning that local classifier er-
ror was present in the training data for global clas-
sifiers. Alternatively, doubly-labeling activities would
have allowed for training local and global classifiers
on the ground truth labels simultaneously. The effects
on global rates is unknown; using local labels could
allow for the global classifier to account for and correct
local errors, though it may also worsen results by dis-
torting global classifier mappings. Furthermore, in this
experiment a great deal of the GAR error when using
locally classified activities was due to the fact that the
data generated in Phase 1 of the experiment differed
greatly from the data generated in Phase 2. Although
subjects were instructed to conduct local activities as
they would in a meeting, they were incapable of re-
producing their own behavior under the group activity
conditions. This becomes apparent when comparing the
averaged maximum feature values for signal average
(812 local vs. 1,324 global) and variance (6,621 local vs.
148,271 global) of the two datasets. Eliminating this dis-
crepancy would involve labeling local activities during
group activities which would greatly increase labeling
effort.

Table 4 indicates that the energy consumed by the
nodes for the purpose of transmission dropped by
33 % when the nodes only transmit a locally classified
situation instead of locally generated features. When

compared with Table 3, it becomes clear that these
values come at a high price in terms of the recognition
rates for global classification.

In the previous section, the nB classifier performed
badly as a global classifier. Both the nB and DT clas-
sifiers performed comparably locally, but there is a
disparity of up to almost 50 % for global group activ-
ities based on local features. This indicates that GAR
presents problems which are not present for single-user
AR, and that not every classifier algorithm used for
single-user HAR is appropriate for multi-user GAR.
Data analysis indicates that often times group activi-
ties create multiple clusters in the multi-dimensional
feature (18 dimensions) and activity (three dimensions)
space, for instance group activity “Presentation” con-
sists of three clusters, one for the “flavor” of the activity
when each different user presents. The nB classifier
used here uses a single Gaussian to model each activity
without kernel estimation. For GAR, the poor results
imply that a probabilistic approach must be combined
with clustering and covariance modeling in order to
model multiple clusters and dependencies, as the naive
Bayes assumption can be detrimental.

8.2 The energy-recognition tradeoff

The ratio of how much of the total energy consumption
is used for communication can be seen in Table 4, and
is very much system and implementation dependent,
where the volume of data falls by 75 %, meaning that a
large portion of the energy consumed for communica-
tion is in overhead.

Also currently, Table 4 indicates that the energy used
for transmitting data is only around 4 % of the total
amount of energy consumed by the node, which is due
to this fact. The short sample window length (500 ms)
means each communication contains only half of one
second’s worth of data. Increasing the length of this
window would increase the amount of data per packet
and reduce the packet overhead ratio. These values are
heavily system and scenario dependent, where factors
such as number of sensors and features, as well as
window length and sample rate play a large role.

Changing these parameters could tip the energy and
GAR rate trade-off and would require a new evalua-
tion. In this system, only two features are calculated,
whereas in the literature, activity recognition systems
often implement multiple features in the time and fre-
quency domains [1, 3, 12, 25, 26, 30]. Increasing the
number of features calculated would further tip this
ratio in favor of local classification and clustering, also
increasing the overall effect of the energy consumed for
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communication on the total energy consumed by the
system.

8.3 Using clustering for GAR

Although the results of GAR using local hard clus-
tering were significantly lower than using local fea-
tures (77 % as opposed to 96 %, 20 % drop), clus-
tering is quite promising. Clustering does not require
a separate phase for local training as local labels are
not required (unsupervised learning), and reduces the
energy consumption due to transmission by 33 %.
The 20 % drop in GAR rates is prohibitive for most
applications.

Soft probabilistic clustering, which showed signi-
ficant promise for other applications [5], proved to be
an effective tool here. The GAR rates in Table 3 indi-
cates an accuracy of 94 % for soft clustering, compared
to the maximum of 96 % when using features. This
indicates a loss of recognition accuracy of 2.8 % from
GAR using features to GAR using soft clustering, while
maintaining energy savings at approximately 29 %. The
implications of these results are two-fold. Depending
on the number of clusters identified, a parameter which
can be controlled by the system designer, the resulting
impact on energy reserves can be varied as well. The
amount of data communicated is proportionate to the
number of Gaussian components, therefore less clus-
ters means lower consumptions.

Conversely, it stands to reason that increasing the
number of clusters increases the quality of the in-
formation transferred, thereby increasing recognition
rates. In this specific instance, between 1 and 3 clusters
were detected per node, with a total of 6 clusters.
This configuration generated power consumption val-
ues only slightly greater than hard clustering (double
the data volume), but already produced high recogni-
tion values. Soft clustering allows the application de-
signer to tune the tradeoff between energy consump-
tion and recognition by increasing or decreasing the
number of clusters. The range for tuning is given by the
recognition rate using raw data (features, in this case
96 %) which is the maximum, with the minimum being
the values for hard clustering (here 77 % accuracy).

Using local activities reduces cost, but also reduces
GAR accuracy by an unacceptable 47 %. Hard cluster-
ing maintained the cost reductions but with an accuracy
loss of 20 %, the advantage being that unsupervised
learning does not require single-user labels. Soft clus-
tering enables high recognition rates without requiring
local labels, representing a real and viable solution to
the doubly labeling problem. In this instance a loss
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of only 3 % of recongition could be achieved without
requireing local labels.

8.4 Generalization of results

As a strong caveat, the absolute values for GAR rates
and energy consumptions cannot be assumed for other
collaborative GAR problems. The activities here were
designed to present a collaborative GAR problem for
experimentation, and to be fairly straight-forward to
recognize. Results for different scenarios, as is also the
case with SAR and MAR, would depend on a multitude
of factors such as sensing modalities, type and number
of activities, amount of training data, etc.. What can be
generalized, however, are the relative rates for energy
consumption, communication volumes and recognition
rates with respect to the abstraction levels under similar
conditions.

9 Conclusion

This paper introduced a system for group activity
recognition using only wearable and mobile devices for
both sensing and recognition purposes. The problems
of multi-user (MAR) and group activity recognition
(GAR) where defined and further classified into co-
operative and collaborative problems, where informa-
tion exchange between nodes was analyzed. An exper-
iment was designed to investigate the effects of the
abstraction level for information exchange on energy
consumption and recognition rates.

The experiment was conducted in an office scenario
where nodes attached to mugs were used to monitor
user’s activities and perform collaborative group activ-
ity recognition on a mobile phone. Different levels of
context preprocessing at the mugs were examined and
evaluated in terms of power consumption and activity
recognition rates. Specifically, using raw data, signal
features, locally classified single-user activities and lo-
cal clustering were examined as the basis for GAR and
evaluated in terms of the cost of transmission incurred
as well as GAR rates. The dataset was presented as part
of the scientific contribution of this work.

Results indicate that for the given set of activities,
the optimal recognition was achieved using locally ex-
tracted features, with GAR accuracy of 96 % and a
10 % drop in the amount of energy consumed for the
purpose of wireless communication. Locally classifying
activities and using these to classify the global group
activity reduced power consumption by a further 33 %
to 40 % total, but incurred a 47 % drop in global multi-
user GAR rates due to subjects’ inability to recreate
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their own behavior under different conditions. Using
local hard clustering showed potential by maintaining
the reduced power consumption at 40 %, but still in-
cured a recognition drop of 20 %.

The investigations presented here into soft clustering
for GAR showed two major insights. First, probabilistic
soft clustering using Gaussian mixtures can be used
to tweak the tradeoff between accuracy and power
consumption of the GAR application. Second, by re-
ducing power consumption (here only twice the com-
munication volume compared to local activities, saving
approximately 36 %) and maintaining high GAR accu-
racy (only a loss of 2.8 %), probabilistic soft clustering
represents a method for tackling the doubly-labeling
issue which is intrinsic in GAR.
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