
The Particle Computer System

Christian Decker, Albert Krohn, Michael Beigl, Tobias Zimmer
Telecooperation Office (TecO)

University of Karlsruhe
Karlsruhe, Germany

{cdecker, krohn, beigl, zimmer}@teco.edu

Abstract—This paper presents a sensor-based, networked em-
bedded system, referred to as the Particle computer system. It is
comprised of tiny wireless sensor nodes, capable of communica-
tion with each other, as well as connectivity with backend, PC-
based systems, thereby facilitating software development and
data analysis in an integrated systems package. The core design
principles of the sensor nodes enable operation in very mobile
settings and truly ad-hoc, peer-to-peer interoperation without the
intervention of a master or explicit middleware layer. The two
main system properties highlighted in this paper are: 1) informa-
tion distribution to all components within the system and 2) the
usage of a common communication language in all system com-
ponents. This language has been proprietarily developed for the
Particle system and is known as ConCom. As a result of these
system properties, we have found the Particle system to be very
extensible and applicable in many everyday scenarios. The paper
presents insights to the implementation of the Particle computer
system, including software development and data analysis capa-
bilities, and the overall system integration.

Keywords – Particle Computer, AwareCon, ConCom,
Middleware-free Architecture, Sensor Network, File System

I. INTRODUCTION
The Particle computer system (details found at

http://particle.teco.edu) is the result of intensive, long-term research.
The current system has its roots in the EC funded Smart-its
(http://www.smart-its.org) project, which started in 2000 and ended in
2003. Within the Smart-Its project a concept for a generic platform
appropriate for embedding computation in the real world was devel-
oped and implemented as three concrete prototype platforms. The
resultant devices, originally called Smart-Its, were small, embedded
devices, allowing attachment to everyday objects, augmenting them
with sensing, computation and communication capabilities. Subse-
quent to the project’s conclusion, the authors of this paper resolved to
refine and enhance the prototypes, leading to the Particle platform
described in this paper. The paper continues by motivating the design
principles of the Particle computer and then proceeds to discuss its
core computing, communications and sensing technology in section 3.
Section 4 reverts to a broader picture of the system, with a focus on
integration, while section 5 explains the development and data analy-
sis issues that arose. The paper concludes with a short experience
report in section 6 and a future work in section 7.

II. MOTIVATION
Networked sensor systems are becoming very popular as base

technology for many military, industrial and home applications, such
that generalized platforms for supporting the prototyping, analysis and
ensuing development of these applications is in high demand. One of

the more popular platforms to have emerged from collaboration be-
tween academia and industry is the Berkeley Motes [8], whose devel-
opers can claim a rich research history, including the area of distrib-
uted data processing within sensor networks. Communication is
organized using the concept of active messages [9], which facilitate
automated network organization based on the building and mainte-
nance of a routing tree between all nodes. The backend system, such
as a PC, has a special role as the controller of the tree’s root node,
imposing a hierarchy on the overall system.

The Particle system shares some similarities with the Motes, yet
there are fundamental differences stemming from the development
goals. In particular, the Particle computer system targets highly mobile
settings, where many wireless sensor nodes encounter each other and
exchange data over a relatively short period. An example of such a
setting is in an office, where lots of people interact with each other and
with their environment in order to make appointments, organize and
schedule meetings, or to support collaboration during meetings. Con-
sequently many everyday items and objects, including tables, chairs,
pencils, notepads, office machinery and others, are interacted with and
carried by people in efforts to collaborate and complete their everyday
tasks. We identified more than 450 such items in a regular office, both
purposely and inadvertently transported by office workers, for usage
in planning, meeting, developing ideas, or even in more casual situa-
tions. As these items are already part of the everyday, productive
office interactions, they provide a valuable source of analysis informa-
tion regarding the dynamics of tasks within the office environment and
subsequent development of solutions for enhancing the interactive
experience with these items. This however requires unobtrusive sens-
ing or task, activity and environment properties, as well as a means of
exchanging and interpreting this potentially explosive set of data. We
therefore designed the Particles nodes with these requirements in
mind, such that attachment to various objects like chairs, windows,
doors, pens, video projectors and other devices, items and even peo-
ple, various control tasks and systems in the office environment can
make more informed decisions. Secondly, by collaborating with each
other, the nodes report environmental conditions or intrinsic states and
may decide appropriate actions based on rules defined for the man-
agement of the environment. Consider automating the decision to
close the jalousie if the video projector is switched on, or take a pic-
ture of the whiteboard when the pen is laid down. The deployment
properties and rules will vary in different environments, such that the
feature of ad-hoc collaboration between sensor nodes is desirable.
Ideally no master should be required or previously selected, as the
network should be organized in a peer-to-peer fashion, enabling the
mutability of collaboration possibilities for highly dynamic tasks.
However, in cases where information from backend systems in a LAN
infrastructure is needed or applications in this infrastructure should be
supported, the Particle nodes should be seamlessly integrated in this
infrastructure. Consider a calendar application that needs to be up-
dated when a spontaneous meeting is detected in a previously unre-
served room. In order to support these goals a very pragmatic design
principle has been applied, namely, “there must exist a direct means of

communication between all system components”. An appropriate
radio protocol for the sensor nodes should incorporate this principle in
order to support high mobility and ad-hoc collaboration. Similarly, the
backend integration requires that the interaction between nodes and
the PC-based systems is based on a consistent, common communica-
tions interface. This is achieved by two mechanisms: 1) distribution of
all information within the system and 2) a common communication
language. Both mechanisms combined enable communication that is
understood by all components without any conversion or mediation
through a third party such as a middleware. As a result, the system
architecture can be defined as being “flat”, yet portrays loose coupling
and high cohesion with its distributed approach, which removes the
conceptual border between sensor nodes and backend systems. This
implies that every component in the system can be conceptually con-
sidered as another Particle node. Application Programmers would
appreciate the systems uniformity in this respect, as they could flexi-
bly shift between using the Particle nodes as pure sensor value pro-
ducers and situations where the nodes operate collaboratively. Even in
the case of hybrid application design where functionality is imple-
mented on the nodes and also within the backend, a programmer will
always have direct control over the communication. This similarity of
software components and sensor nodes enables a straightforward, but
still very flexible approach for developing distributed applications
with the Particle system. This is needed for the expected diversity of
applications in such agile domains like the office domain.

III. PARTICLE TECHNOLOGY

A. Particle Computer Hardware
The Particle hardware follows the engineering concept of separa-

tion of concerns. In doing so, a Particle node consists of two boards -
one for containing the communications functionality and the other for
other utilities of the node such as sensing. The communications board
is shown in Fig. 1, and implements the Particle’s wireless networking
functionality. The board’s dimensions are 15x48 millimeter and it
includes a PIC18F6720 microcontroller running at 20 MHz (5 MIPS),
a TR1001 transceiver enabling a data rate of 125kbit/s on 868 MHz, a
512KB flash memory, a real-time clock (RTC) and a power circuit,
which employs a power supply compatible with a single, regular AAA
battery. Additionally, the board comprises two LEDs for visual indica-
tion, e.g. communication status, and a speaker for audio notification.
Running on a single 1.2V AAA rechargeable battery the board con-
sumes on average 40mA with the communication and the LEDs ac-
tive.

Figure 1. Particle communication board
 (transceiver, external flash memory, speaker on the backside)

Particle communication boards can be connected to additional
boards via the onboard connector, such that the core Particle hardware
functionalities can be extended. The onboard connector provides a 21-

pin interface to the microcontroller’s I²C and serial communication
capabilities, several digital I/O pins and pins for analog measurements
through the microcontroller’s analog-to-digital converter. The connec-
tor further provides the supply voltage for these boards. In [1] an
analysis of various applications for sensor nodes identified and classi-
fied the selection of sensors commonly used for measurement and
deriving information from the environment. This motivated the selec-
tion of an acceleration sensor, a temperature sensor, a light sensor and
a microphone on a typical sensor board of 17x22 millimeter (Fig. 2a).

Figure 2. (a) Sensor board with light, temperature, acceleration and
microphone sensor, (b) Sensor board with additional microcontroller

(backside) and force sensor

The sensors on the board in Fig. 2a are directly connected via both
boards’ connectors to the microcontroller of the communication board.
In addition to the networking tasks, the microcontroller samples and
aggregates sensor information, e.g. computing of the average tempera-
ture over a period of time. In this case, one could argue that this vio-
lates the separation of concerns principle, as proposed at the beginning
of this section. However, it is shown that by interconnecting another
sensor board (Fig. 2b), which includes its own microcontroller, here a
PIC18F452, the sensing and communication functions are easily
separated. Important to note is the role of the connector on the boards.
It enables the successful separation and is therefore required as a
constant part in the hardware design. The implementation of the sepa-
ration also leads to an inherent distribution of functionality and con-
tributes to defining the flexibility of the Particle computer hardware.
This is one of the success criteria for the Particle system, since the
hardware can then be utilized in various scenarios covering a huge
domain for sensor network applications. There are also other boards
that exploit this functional separation, including the so-called “break-
out boards” for easy connection of peripheral sensors and hardware,
serial boards and USB boards for communication with other systems
via RS232 and USB protocol, and power boards for extending the
available power supply. An important additional board is the “bridge
board” (Fig. 3), which enables communication between Particle nodes
and other computing systems over a UDP network.

Figure 3. Particle bridge

(a)

(b)

B. Particle Communication
The communication board runs a customized communication pro-

tocol AwareCon [2] especially designed for ad-hoc communication,
with a design that follows the fundamentals of the established
OSI/ISO layered approach. The layers include physical radio layer,
(RF) Link Layer (LL) and the Application Convergence Layer (ACL).
Several features have been implemented in order to obtain a special-
ized protocol for distributed networked sensor system and the proper-
ties of the Particle’s target application environments. Mobility was an
important aspect for the protocol design and as a result AwareCon is
able to handle high mobility of nodes. In Fig. 4 the delays until a
single node was synchronized with the network or with another single
node were measured and shown as a distribution. As a result, we
found that the synchronization with a new network in range takes
typically around 12ms. The mean delay for the synchronization with
another single partner is around 40ms.

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

delay [ms]

re
la

tiv
e

oc
cu

rr
en

ce

synchronizing to network

synchronizing to single partner

Figure 4. Distribution of synchronization times

Once synchronized, nodes exchange synchronization signals in a
random and distributed manner and establish a common time slot
scheme. With a common time slot established they can immediately
exchange data. With this fast and self-organized synchronization
AwareCon is suitable for highly mobile environments.

Figure 5. AwareCon time slot

Fig. 5 shows the slotted TDMA structure of AwareCon with its
13ms time slot. The design of AwareCon also reflects the concept of a
fully distributed system. Nodes all have equal responsibilities to estab-
lish time slots, exchange synchronization signals and keep an estab-
lished timing scheme alive. There is no access point or master devices
like in W-LAN, Bluetooth or many other known protocols. The chan-
nel access uses a nondestructive bit wise arbitration known from
wired networks such as the CAN field bus. This access method
achieves outstanding low collision rates especially for high number of
concurrent nodes. It is also known for its good capabilities to handle

priorities. Since only bits need to be signaled, the arbitration slot can
be very short. However, the scheme imposes hard requirements on the
hardware, since the Particle node’s TR1001 RF front-end has to be
constantly switched between sending and receiving mode. We com-
pared the probability of no collisions of the AwareCon arbitration with
the traditional CSMA scheme of W-LAN in order to illustrate the
performance of AwareCon during the arbitration. The following figure
depicts the probability of no collisions for an increasing number of
nodes that have concurrent send requests. Thereby, AwareCon uses 10
arbitration slots and the W-LAN arbitration 50 slots.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 5 10 15 20 25 30 35 40 45 50 55

W-LAN
Arbitration
AwareCon
Arbitration

Number of Nodes
Pr

ob
ab

ili
ty

 o
f n

o
C

ol
lis

io
n

Figure 6. Probability of no Collisions for W-LAN and AwareCon arbitration

The data traffic is organized in packets of 64Bytes data payload.
Each time slot of AwareCon can carry one packet of data. Several
energy saving mechanisms have been introduced to AwareCon of
which the most important one is the so-called early shutdown. Seman-
tic data filtering [10] enables nodes to interrupt and cancel a running
packet reception at an early state before the transmission is completed.
Thereby, an application on top of AwareCon can subscribe to the data
that concerns its logic. During reception, incoming data is analyzed
and matched according to these local subscriptions. In case of a mis-
match the nodes can turn off their radio front-ends or even go into
sleep mode until the next timeslot and thereby save energy. According
to Fig.5 this cross-layer approach would save up to 91% if the node is
set to sleep until the next slot. As the protocol is mainly implemented
in software and runs on the same processor like the application,
AwareCon foresees a certain time in each timeslot with no protocol
activity to always guarantee a percentage of >33% of the CPU time for
the application even during high data traffic times.

C. Particle Computer Software
Further capabilities of the communication board are encapsulated

in the system library. It provides system functions for a basic configu-
ration of the microcontroller’s general I/O pins and I²C and serial
communication subsystem, basic access methods for the analog-to-
digital converter and the internal EEPROM of 1KB as well as the
external flash memory. It further provides methods for reading and
setting the onboard RTC. In case the sensors are connected to the
communication board, an additional sensor library is used on top of
the system library utilizing these system functions. The sensor library
includes drivers for sampling previously mentioned typical sensors,
such as an acceleration sensor, an I²C temperature sensor, a light
sensor and a microphone. The time synchronization of the communi-
cation stack works virtually like a scheduler, leaving 4.5 milliseconds
for sensor sampling before the next communication phase starts again.
The drivers have to be aware of this constraint, as it will affect for
instance a series of consecutive samplings. Recently, the Particle file
system [5] was implemented on top of all libraries. Representing all

resources, such as communication, sensors and memory as files en-
ables a uniform access via only two functions read(..) and
write(..). The Particle file system is a hierarchical access struc-
ture, which also allows the file-based representation of the API of the
system library. All files can be shared among Particle nodes, establish-
ing a concept of distributed software among them.

IV. THE PARTICLE SYSTEM
The Particle system view (Fig. 7) depicts the Particle technology

as a lower layer and the backend system components as a higher-level.
The latter communicate with other components via UDP or to Parti-
cles nodes via bridges. The communication between Particle nodes in
the technology layer is reflected as UDP broadcast communication in
the backend layer. Thereby, information from the nodes is distributed
to all backend components connected to one LAN.

ParticleAnalyzer Over-the-Air-
ProgrammingParticleDB

Particle
Location
System

Bridge

ConCom
(AwareCon)

TimeService

Particle Technology

Backend Components

UDP Network

libparticle

ConCom
(UDP Broadcast)

ConCom
(AwareCon)

ConCom
(AwareCon)

Particle Node

Particle Node

libparticlelibparticlelibparticlelibparticle

Figure 7. The Particle System

Typical backend system components are permanent services such
as the time service (provides the actual time by request of setting the
RTC on the core board), the ParticleDB (logs all message communica-
tion of Particles nodes), and the Particle Location System [6] (imple-
ments a cell-of-origin location system utilizing the bridges). Other
components support the development and data analysis processes: the
ParticleAnalyzer serves as the real-time monitoring tool, and Over-
the-Air-Programming allows an application specific in-situ update of
the Particle computer software. Again it is to be noted that the Bridge
does not constitute a “mediating middleware component”, as there is
no semantic translation between the Particles nodes and the backend
components when communicating across the bridge. The bridge is just
another Particle node with no exceptions. The same is true from the
perspective of backend components for the communication with Parti-
cle nodes. This design results in a flat system architecture.

A. ConCom
As a consequence of this flat architecture a common communica-

tion language between all components is required. In the Particle
system the proposed approach is ConCom[10]. ConCom represents
data in a strictly typed form of tuples. A tuple starts with a type identi-
fier (3 bytes), followed by a length statement (1 byte) and then a num-
ber of data bytes specified by the length. Tuples can be concatenated
to sentences. Thereby, the first tuple is referred to as the subject. Fig. 8
illustrates a ConCom sentence. Type identifiers are freely selectable
and enable a flexible and expressive way to describe the data. In the
example above the sentence is originated with a subject ABC addi-
tionally containing version number 1 and continues further with tem-
perature data identified by STE (sensor temperature) of 23.5 degrees
Celsius. However, the structure in sentences is rather flat, such that
complex statements may prove difficult to describe by a combination

of other tuples. In these cases new tuple types have to be introduced
describing the complex statement as a block of encoded data, as op-
posed to a more expressive tuple concatenation. The notion of a sub-
ject in ConCom enables application specific processing of data within
the system. Each application running on the Particle nodes and on the
backend components is identified by its subject. An application sub-
scribes itself to a subject and filters thereafter all received information,
while the procedure for sending from the application uses the subject
as the prescript of the outgoing message. This enables various applica-
tions, distributed across multiple Particle nodes and backend compo-
nents, to operate in one Particle system at the same time without data
interference. As a result, type identifiers differing from the subject,
can be reused in other meanings within the context of the respective
application. ConCom is in this sense the consistent, underlying coor-
dination model employed throughout the Particle System. The packets
communicated between Particle nodes on the lower layer, between
backend components and across the both layers use the ConCom
format. Without middleware, ConCom tuples enable a type safe way
to communicate a diversity of data, ranging from various sensors to
data resulting from computing processes on any layer and component
in the Particle system.

Le
ng

th
Da

ta

...

Subject Tuple Tuple
Ty

pe

A B C 1 1

Le
ng

th
Da

ta

Ty
pe

S T E 2 23 5

Figure 8. Example of a ConCom Sentence

B. Backend Components
In this section we return to discuss the upper layer backend com-

ponents of the Particle system, as depicted in Fig. 7. Each component
possesses a common interface referred to as libparticle for the com-
munication with Particle nodes or to other components. The libparticle
is a cross platform library written in C for Windows and Linux sys-
tems. It is a functional part of each backend component and handles
the UDP broadcast communication, providing functions for creation,
parsing and filtering ConCom sentences. As a consequence, backend
components can be distributed throughout the UDP network and
operate independently. The backend components therefore follow a
similar distributed approach to the Particle nodes.

C. Scalability of the Particle System
Although we have motivated the advantages of complete informa-

tion distribution and language uniformity throughout the Particle
system, we also considered some of the disadvantages of this architec-
tural decision. One of the issues we considered is that of scalability,
given that we have already shown in Fig.6 that the AwareCon protocol
scales very well and is able to handle many concurrent send requests.
The problem of scalability mainly arise at the bridges due to the
bandwidth differences between the backend and the Particle nodes.
Considering a regular bandwidth of 100MBit/s in a LAN and the
125KBit/s of the Particle nodes, we concluded that 800 Particle nodes
would be required in order to exceed the LAN’s bandwidth. Since the
arbitration of AwareCon prohibits 800 concurrently sending Particle
nodes in one Particle network, this mass can only be generated by 800
bridges forwarding data concurrently into the LAN. We therefore do
not place emphasis on investigating scalability issues in this regard.
Nevertheless, in cases where backend components send ConCom
sentences at a high rate they may create a situation of overloaded
bridges. A solution to this problem is given in [3] where the informa-

tion distribution is restricted to certain, semantically defined spatial
regions. The bridges in the system implement a filtering on such re-
gion-descriptions in order to approach the scalability issue. Particle
nodes can easily be located in such regions through “pings”, which
triggers them to send a response. Received by a bridge, this message is
preceded by the region description of that bridge. Backend compo-
nents have to precede their ConCom sentences with this region de-
scription in order to communicate with the Particle nodes in that re-
gion. Particle nodes themselves are not aware of this scheme.
Although this addresses the scalability problem, it has an effect on the
communication of very mobile Particle nodes, since they may change
their region before the backend has located and communicated with
them. In order to estimate the effect of region based communication
on mobile nodes, we can use the round trip time (RTT) for the com-
munication between backend and Particle nodes. Assuming that the
smallest region is around one bridge – this would address the scalabil-
ity problem at best – we can determine the maximum speed of the
node in order to be reachable by the backend in that region. If that
speed is exceeded, the backend would send a ConCom sentence to a
region which the receiving node has already left. In this situation the
system would not be able to handle the mobility anymore. For a RTT
of 100ms and circular region around a bridge with a diameter of 10m
and placing the node in the middle between region border and the
bridge, the maximum speed would be 25m/s. This is sufficient for
office environments as the primary application domain of the Particle
system.

V. DEVELOPMENT AND DATA ANALYSIS
In this section we illustrate how to use the distributed system ap-

proach in order to develop applications with the Particle system. For
testing and evaluation of those applications appropriate debugging and
analyzing components are presented.

A. Particle Development
As the first step in the development of a new Particle application

the developer selects an appropriate ConCom subject. In each com-
munication this subject precedes the sentence and separates the new
application from the parallel running ones. The consistency of subjects
is ensured by a type file containing all used ConCom types and their
meaning in the context of their respective application. This type file is
managed by a type manager implemented as a backend component. A
developer registers the selected subject and includes the created type
file in his application. The decoupling achieved does not require the
type manager during the runtime of an application and therefore main-
tains the completely distributed approach of the Particle system. The
actual programming elements comprise both application development
on Particle nodes and backend programming. Both are usually done in
C since this language is supported on all layers through the system. On
Particle nodes the application development preferably utilizes the
uniform access to sensors and the communication stack, which is
provided by the Particle node’s file system. Consider the following
sample expression: write(“/dev/awarecon”,
“/dev/STE”). This reads the temperature sensor (abbreviated by
its ConCom type) and writes the reading in ConCom format on the
communication stack, AwareCon, which completes the transmission.
Communication with backend components is integrated seamlessly
through the use of ConCom, easing the application design for the
developer. Once the application for the nodes is compiled, it is trans-
ferred to the specific nodes via Over-the-Air-Programming (OtAP). A
predefined ConCom subject in conjunction with an identification of
the specific node ensures that the code is downloaded to the one the
developer selected previously. The system library of each node appli-
cation supports OtAP as an integral part, i.e. there is no Particle node
program without this capability. OtAP is an essential part of the devel-
opment process because it enables the in-situ reprogramming of nodes

while being integrated in an application scenario. Besides the applica-
tion code OtAP comprises the complete system image resulting in lots
of redundant code to be downloaded. Realizing this, Particle nodes
provide a virtual machine (VM) as a second way to developing appli-
cations. The developer programs on a PC using a Basic-like language,
which is then compiled to an intermediate byte-code. The byte code is
downloaded utilizing the OtAP semantic to a specific Particle node
running the VM. It is possible to store more than one program on a
node and select the one which should be executed. Byte code for a
simple application is transferred within 5 seconds, while the transfer of
a comparable one including the system image takes 85 seconds under
best conditions. In particular, if there are several programming proc-
esses running concurrently, the VM based programming contributes
definitely to scalability of the overall system, since the number of
exchanged messages is reduced. For comparable programs this results
in a reduction by a factor of 1/258. However, in general it is common
for VM approaches to consume more energy in long-term settings
annihilating the savings for fast program transfer. Further, applications
run slower since the code needs to be interpreted.

The development of backend components utilizes the libparticle. It
shields thereby the details of the communication process and ensures
via ConCom the seamless information exchange to other backend
components as well as Particle nodes. However, the developer should
be aware of the bandwidth differences between backend and Particle
nodes. If packets are permanently sent at a high data rate from the
backend, the usage of the region-based communication from section
IV.C is recommended to maintain the scalability of the system. Never-
theless, short burst can be buffered by the bridge. Once developed and
compiled, the backend component can be deployed on any computer
system within the UDP network. The seamless integration of backend
components without a middleware layer enables a powerful online
debugging. Thereby, an application runs on a Particle node and the
debugger runs within the backend. In order to allow the debugging of
the distributed applications, the debugger needs to be integrated in the
environment of the application. Our system architecture exactly en-
ables this behavior as there is no obvious border between the backend
and the Particle nodes. This allows the debugger to directly communi-
cate with the nodes and basically hook into the running distributed
application. The debugger enables the tracing of function calls, the
watching of variables and complex data types like C structs, and the
use of assertions. All debugging information is communicated via the
AwareCon communication stack during this process to the debugger in
the backend. Similar to the OtAP approach a pre-selected ConCom
subject was used to identify this information and to separate the de-
bugging process from the application specific communication. Sharing
AwareCon for debugging and the application limits the usage of the
debugger on code outside the strictly synchronized communication
interface. Nevertheless, the approach allows to directly trace the exe-
cution of distributed applications just like as another Particle node
would see the application. This was firstly applied during the devel-
opment of the file system and helped to achieve a stable and powerful
implementation.

B. Data Analysis
During the application runtime, Particle nodes and backend com-

ponents communicate with each other. In order to support evaluation
of the application, as well as for logging and analyzing purposes of
sensor readings, we have developed the ParticleAnalyzer and the
ParticleDB. The ParticleAnalyzer (Fig.9) is an all-round tool intended
for real-time analysis. ConCom sentence are parsed and sensor infor-
mation is plotted in real-time graphically as well as on a console for a
detailed view.

Figure 9. ParticleAnalyzer plotting acceleration data during a rotation of a
Particle node

Various filters on ConCom types can be applied immediately in
order to separate the data for plotting. The broadcast nature of com-
munication allows the analyzer to passively identify Particles nodes.
While the AwareCon synchronizes the data transfer on the radio chan-
nel, the bridge and the computing system running the ParticleAnalyzer
impose a non-deterministic delay until sensor data is plotted. This can
cause distortion of the real-time nature of the data. If the ConCom
sentence contains a time stamp tuple from the Particle node’s onboard
clock, the analyzer can use this information to plot the sensor data
correctly. The analyzer links also to the OtAP component, combining
in this way the easy selection of Particle nodes and in-situ reprogram-
ming. The ParticleDB (http://www.teco.edu/projects/particledb) is a
permanently running backend component which creates a huge ar-
chive of all communication going on between Particle nodes. As a
result it provides the opportunity for an analysis of long term data. A
query template on the WWW enables an comfortable way to query for
data using various possibilities to filter them. Returned data can be
browsed or optionally can be exported to a comma-separated format
for import in other applications.

VI. EXPERIENCE
Our permanent test bed for Particle applications is the AwareOf-

fice (http://www.teco.edu/awareoffice), where various objects are
augmented with the nodes. The chairs register human beings sitting on
them and this information controls an electronic meeting doorplate. A
whiteboard pen detects interactions like writing, playing or being laid
down and triggers a video annotation system. In [4] and in the accord-
ing video we demonstrated how to build intelligent office environ-
ments with the Particle computer system. Objects like chairs, office
items and people were equipped with the Particle nodes. The system’s
flat architecture enables for such setting a very quick and easy setup.
Applications incorporated ad-hoc collaboration between sensor nodes
or collaboration with the backend components and could be deployed
within several minutes. Since all information were distributed to all
components, i.e. sensor nodes and backend, and all of them can com-
municate directly to each other utilizing ConCom applications start
operating without the setup of mediating components usually found in
middleware systems. With the DigiClip [6] we investigated the con-
texts of physical documents and tested new sensors, for instance a
capacitive page count sensor, by exploiting separation of concerns,
which underpins the hardware design.

Several labs around the world already bought Particles, amounting
to several communication boards and supplemental hardware. A suc-
cessful result was the RELATE project in cooperation with the Lan-
caster University. Particle nodes utilized ultrasonic transducers as
sensors and computed in a distributed approach the relative position to
each other. An example application of this system can be found in
[11]. Recently, OCE (http://www.oce.com) an office solution provider

from the Smart Surroundings project (http://www.smart-
surroundings.nl) approached us in order to setup another AwareOffice
environment as a test bed for further intelligent office technologies
within that project.

VII. CONLCUSION AND FUTURE WORK
We presented the Particle system – a completely distributed net-

worked sensor system that seamlessly integrates sensor node technol-
ogy and backend components without a middleware layer. The ap-
proach is achieved by the distribution of all information and the use of
ConCom as a common communication language uniformly throughout
the system. As a result, the loose coupling of components makes it
appropriate for highly mobile and ad-hoc settings. As next steps, we
will broaden the palette of sensors and improve the developer support,
by introducing new programming abstractions for managing the sys-
tem at this level of distribution. The goal is to decrease the complexity
for novice developers of the system, but still to facilitate the flexibility
and detailed control of the current library based approach for experts.
The Particle file system will play a major role in this effort and will be
enhanced with adaptive capabilities.

ACKNOWLEDGMENTS
The work presented in this paper was partially funded by the

European Community through the project CoBIs (Collaborative Busi-
ness Items) under contract no. 4270 and by the Ministry of Economic
Affairs of the Netherlands through the BSIK project Smart Surround-
ings under contract no. 03060.

REFERENCES
[1] M. Beigl, A. Krohn, T. Zimmer, C. Decker, “Typical Sensors needed in

Ubiquitous and Pervasive Computing”. Proceesdings of INSS 2004,
Tokyo, Japan, June 22-23. 2004, pp 153-158

[2] M. Beigl, A. Krohn, T. Zimmer, C. Decker, P. Robinson, “AwareCon:
Situation Aware Context Communication”, Ubicomp 2003, Oct. 12-15,
Seattle, USA

[3] M. Beigl, T. Zimmer, C. Decker, “A Location Model for
Communicating and Processing of Context”, PUC Vol. 6 Issue 5-6, pp.
341-357, ISSN 1617-4909, 2002

[4] M. Beigl, T. Zimmer, A. Krohn, C. Decker P. Robinson. “Creating Ad-
hoc Pervasive Computing Environments”, Video at Pervasive 2004 in
"Advances in Pervasive Computing", ISBN 3-85403-176-9, pp. 377-381,
Vienna, Austria.

[5] C. Decker, M. Beigl, A. Krohn, “A File System for System
Programming in Ubiquitous Computing”, To appear in the proceedings
of the ARCS 2005, March 14 –17, 2005, Innsbruck, Austria

[6] C. Decker, M. Beigl, A. Krohn , P. Robinson, T. Zimmer, J. Ma, “A
Three-Tier Architecture for Location Presentation”, Adjunct Poster
Proceedings of Ubicomp 2004, September, 7-11, 2004, Nottingham, UK

[7] C. Decker, M. Beigl, A. Eames, U.Kubach, “DigiClip: Activating
physical documents”, IWSAWC 2004, Tokyo, Japan, Proceedings of the
IEEE ICDCS 2004, pp 388-393

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System
architecture directions for network sensors”, ASPLOS 2000, Cambridge,
November 2000.

[9] J. Hill, P. Bounadonna, D. Culler, “Active message communication for
tiny network sensors”, In the Proceedings of INFOCOM, 2001.

[10] A. Krohn, M. Beigl, C. Decker, P. Robinson, T. Zimmer, “ConCom – A
language and Protocol for Communication of Context”, Technical
Report ISSN 1432-7864 2004/19

[11] A. Krohn, T. Zimmer, M. Beigl, “Enhancing Tabletop Games with
Relative Positioning Technology”, Advances in Pervasive Computing,
Oesterreichische Computer Gesellschaft, Wien 2004.

