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Abstract. This paper reports on a novel recurrent fuzzy classification
method for robust detection of context activities in an environment using
either single or distributed sensors. It also introduces a classification of
system architectures for uncertainty calculation in general. Our proposed
novel method utilizes uncertainty measures for improvement of detection,
fusion and aggregation of context knowledge. Uncertainty measurement
calculations are based on our novel recurrent fuzzy system. We applied
the method in a real application to recognize various applause (and non
applause) situations, e.g. during a conference. Measurements were taken
from mobile phone sensors (microphone, accel. if available) and acceler-
ation sensory attached to a board marker. We show that we are able to
improve robustness of detection using our novel recurrent fuzzy classifier
in combination with uncertainty measures by ∼30% on average. We also
show that the use of multiple phones and distributed recognition in most
cases allows to achieve a recognition rate between 90% and 100%.

1 Introduction

The detection of surrounding situation or context has been an interesting area
of research for almost a decade. Robust context recognition could have many ap-
plications in office or industrial environments. In this paper we focus on a more
playful application area, that is nevertheless very challenging: the detection of
clapping events. The recognition system we present does not assume any a-priori
knowledge regarding the sensors being used or their placement. As sensors we use
mobile phones with microphones and optional acceleration sensors. The phones
may be carried in a pocket or rest on the table. Our system is able to handle
unsteady detection quality, aggregate classifications from different sources and
still classifies situations correctly to a high percentage. In context recognition,
measures to express the confidence of a detected context can be very helpful to
improve the overall robustness of context recognition. Some authors, e.g. Bucholz
et al. [1] refer to this confidence level as ”Quality of Context (QoC)”. [2] shows
the design of quality extensions for context ontologies and how fuzzy set the-
ory can be used for context ontology matching under uncertainty. None of these
publications describes a method how such a quality could be derived. We show



how systems can be designed that deliver a QoC measure, although we use the
term ”Uncertainty” instead of ”Quality” in reference to the wording in classical
AI literature. Support for reasoning about uncertain contexts with probabilis-
tic logic, fuzzy logic and Bayesian networks is described in [3]. How to model
uncertainty in context-aware computing is described in [4], but the method for
uncertainty measure calculation is not described and there is also no evidence
given how uncertainty measures can improve robustness in reasoning. We will
present uncertainty measures, their computation and also evaluate their benefits
in this paper. In our proposed approach uncertainty measures are derived us-
ing a recurrent fuzzy inference system (RFIS)(section 3). We also evaluate how
uncertainty can be used throughout the further inference processes - e.g. fusion
and aggregation of contexts - to increase reliability of classification (section 4
and 5). Furthermore, the paper contains a first system architecture classification
for reasoning systems that are able to produce uncertainty measures (section 2).

2 Various Methods of Calculating an Uncertainty

Measure

There are three general methods of computing an uncertainty value in a con-
text classification system. These three methods correspond to possible system
architecture styles or classes for uncertainty measurement, as shown in figure 1.
Which of these styles are suitable depends on the classification method, but also
on the specific setting in an application context. The most general architecture
styles is Parallel Uncertainty Calculation (fig. 1(a)). In this system architecture
style a context classifier works in parallel to an uncertainty detector (here called
classification fuzziness). The uncertainty classifier thus behaves like an indepen-
dent observer that constantly evaluates the output of the context classifier. Such
systems are useful if methods for classification and evaluation of the classifica-
tion differ. [5] shows that this approach is very beneficial for filtering contexts. A
more compact classification is the Implicit Uncertainty System Architecture (fig.
1(b)). An example implementation of this architecture style are Fuzzy Inference
Systems (FIS)[6]. Here, fuzziness from within the mapping FIS can be used to
derive the uncertainty level. E.g. in an TSK-FIS the outcome requires interpre-
tation of the mapping outcome using a membership function. The disadvantage
of this method is, that only the fuzziness of the mapping model can be detected,
with only small variations among different classes. The uncertainty of the sys-
tem configuration itself will thus not be taken into account when calculating the
uncertainty level. The third architecture style is State Depended Uncertainty
calculation 1(c). An implementation example of this architecture are recurrent
fuzzy classification systems. Here it might be possible to solve problems arising
in Implicit Uncertainty Calculation Architectures. Although this paper focuses
on the use of uncertainty measure for filtering, we will also show in our system
implementation how the measure is computed. Our system implements filter-like
behavior and provides a fuzzy uncertainty on which a fusion or aggregation step
is significantly improved when using uncertainty measures.
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Fig. 1. Different system architecture styles to compute uncertainty of a context clas-
sification

3 Offline Identification and Online System

3.1 Offline Identification Algorithm for RFIS-Classifier

A Recurrent Fuzzy Inference System (RFIS) is used to map sensor data features
onto a classifiable linear set. The general idea behind Recurrent Fuzzy Systems
(RFS) can be found in [7].This soft system needs to be identified upon an anno-
tated training feature set via a combination of a clustering algorithm and linear
regression. Usually the identification of a Fuzzy Inference System (FIS) needs
only one step of clustering, but since we use a recurrent one, each new mapping
result leads to a new set of input data, upon which another iteration of clustering
needs to be performed. The algorithm for identifying the RFIS consists of the
following steps:

1. Data Separation: The training data is separated according to the class
the data pairs belong to. Clustering on each subset delivers rules that can be
assigned to each class. 2. Subtractive Clustering: Subtractive clustering
[8] per subset identifies the number of rules and the membership functions of
each rule’s antecedent without having to declare how many clusters there are. 3.

Least Squares: A linear regression identifies the linear functional consequence
of the rules. The least squares method minimizes the quadratic error, which is
the quadratic distance between the desired output and the actual output of the
TSK-FIS classifier for the training data set. Minimizing the quadratic error leads
to an overdetermined linear equation to be solved. 4. Recurrent Data Set:

The recurrent TSK-FIS is obtained over a data set that has the output of the
previously identified FIS shifted by one, so the first data pair of the training set
has a zero in the recurrent dimension. All data pairs for time t > 1 have the
output of the FIS mapping of t + 1 in the recurrent dimension. For this data set
the steps 1 to 3 are repeated. 5. Stop Criterion: We could not find a general
stop criterion, since two demands need to be met. The resulting classifier needs
to have high accuracy and the outcome needs to have an uncertainty level that
is of profit for reasoning. Therefore the developer has to decide, according to a
separate check data set, what good results for the classifier and its uncertainty
levels are. The steps 1 to 4 are repeated and graphically observed until the
developer recognizes a good outcome.



The RFIS identified through this algorithm is the key component of the sensor
data classifier. This RFIS also provides the desired fuzzy uncertainty described
previously.

3.2 Online Recurrent Fuzzy Classifier

The online recurrent fuzzy classifier consists of several steps of processing from
a real world value to a tuple of class and fuzzy uncertainty. The first step is the
sensory, that converts the real world signal into a digital measurement. Secondly,
the desired features are extracted from the measurement. In the third step the
Recurrent Fuzzy Inference System (RFIS) maps the features onto a classifiable
linear set. The outcome of the mapping at time t gets fed back as part of the
input at t+1. The linear set gets fuzzily classified according to designated fuzzy
numbers in the last step. All steps are diagrammed in figure 2.

Fig. 2. Online system architecture for classification and fuzzy uncertainty.

1. Feature Extraction: The features used for activity recognition with
acceleration measurements are mostly variance and mean values, since they are
easily calculated and give good classification results. These features were used
to preprocess the accelerometer data from the ”OpenMoko” phones and the
”Freescale ZSTAR”. For audio data the standard extraction method is a ”Fast
Fourier Transformation (FFT)”, which is also used to extract the frequency fea-
tures for the audio classification. The audio sources are the microphones of the
”OpenMoko”. 2. Recurrent FIS Mapping: Takagi, Sugeno and Kang [9]
(TSK) fuzzy inference systems are fuzzy rule-based structures, which are espe-
cially suited for automated construction. Within a TSK-FIS, the consequence of
the implication is not a functional membership to a fuzzy set, but a constant or
linear function. A TSK-FIS is used to map the extracted features onto a linear
set, whose values can be assigned to a class identifier in a separate classification
process. The outcome of the mapping at time t is fed back as additional input
dimension for the TSK-FIS mapping at t + 1. The recurrency not only deliv-
ers the desired uncertainty level, but also stabilizes and improves the mapping
accuracy. 3. Fuzzy Classification: The outcome of the TSK-FIS mapping
needs to be assigned to one of the classes the projection should result in. This
assignment is done fuzzy, so the result is not only a class identifier, but also a
membership identifying the fuzzy uncertainty of the classification process. Each
class identifier is interpreted as a triangular shaped fuzzy number. The mean
of the fuzzy number is the identifier itself, with the highest membership of one.
The crisp decision, which identifier is the mapping outcome, is carried out based



on the highest degree of membership to one of the class identifiers. The overall
output of the RFIS mapping and the classification is a tuple (CA, µA) of a class
identifier and the membership to it.

4 Reasoning with Uncertainty

The reasoning about uncertain contexts is residing on the second level of infor-
mation processing, where context information has been already inferred from
sensor data. On this level logics or ontologies are usually used to infer new
contextual knowledge. After our classification process we end up with tuples of
class identifiers and fuzzy uncertainty measures, e.g. (CA, µA). The usual fuzzy
modus ponens used to derive new knowledge has various definitions throughout
the literature, e.g. [10]. These inference methods are complex and need a brief
introduction, if they are used. Since we focus on fuzzy uncertainty and how it
can improve accuracy, the consequences information content and the further in-
ference, we used a different, simpler method to prove our point. The inference
of the contexts is done crisp with simple propositional logic and the derivation
of the uncertainty is done accordingly through a fuzzy t-norm/t-conorm.

4.1 Fusing Equal Contexts with Uncertainty

The idea behind the fusion of contexts is to use equal contexts from different
sources in order to achieve mutual confirmation. In the crisp case contexts get
fused based solely on their occurrence in the same time period. Although the
overall probability is improved with each mutual confirmative crisp context in-
cluded in the fusion, the reliability of each fusion member and outcome can vary
strongly. This variation in reliability of each context is lost in the merging of
crisp contexts and all fusions with the same number of members have the same
probability of correctness. Fusion based on a fuzzy uncertainty level has a lot
more to offer. If the fusion is done fuzzy according to the uncertainty level of
each context, the confidence is not lost in the fusion process. Even if many mu-
tual confirmative contexts each have a low confidence level, the fused context
gains reliability. For the fusion of uncertainty we used the fuzzy equivalence to
a crisp disjunction, the t-conorm. Many different t-conorms appear throughout
the literature, we decided to use the probabilistic sum (SP (x, y) = x+ y−x · y).
The result of the probabilistic sum is higher than each input of the t-conorm,
which suits our understanding of the fusion process. An example for the fusion
of context CC out of the two contexts CA and CB and the fusion of the fuzzy
uncertainty accordingly, is the following:

CA ∨ CB → CC

SP (µA, µB) = µA + µB − µA · µB

= µC











(CA, µA) ∨ (CB, µB) → (CC, µC) (1)



4.2 Aggregate New Contextual Knowledge with Uncertainty

Through aggregation contextual knowledge of many sources is combined to new
contextual facts. The crisp decision is a typical application for propositional and
predicate logic. The antecedent part in combination with the rule determines
the conclusion, which is the typical modus ponens inference. In this kind of
inference the reliability of each input source is not taken into account. Also
the general uncertainty of each context classification is not considered. These
uncertainties have a huge impact on the outcome of the inference process. We
will show how a fuzzy aggregation can improve the outcome in the evaluation
section. For the aggregation of new contexts we used simple propositional logic
and for the inference of the uncertainty we used a t-norm. Since the result of the
fuzzy inference needs to be less reliable than any of the inputs, the best t-norm
is in our understanding the product norm (TP (x, y) = x · y). An example for the
aggregation of context CC out of the contexts CA and CB and inference of the
fuzzy uncertainty according to the context aggregation, is the following:

CA ∧ CB → CC

TP (µA, µB) = µA · µB

= µC











(CA, µA) ∧ (CB, µB) → (CC, µC) (2)

5 Evaluation - ”Detecting Acclamation”

To evaluate the classification, fusion and aggregation we used parts of the office
scenario. The aim was to show that, compared to the simple fusion of context
classes, the reliability for fusion of identical context classes from different sources
improves, if a uncertainty value is used as weight. The second argument for
using an uncertainty value in the inference process is the aggregation of new
contextual knowledge. The weighted aggregation should show improvement in
reliability towards crisp inference. We used two ”OpenMoko Freerunner” devices
and one ”Freescale ZSTAR” demo as sensor data sources. For the ”Freerunner’s”
two recurrent FIS (RFIS) classifiers were used, with the following classes each:

1. 10-point FFT, 1000-sample window, audio at 4kHz ⇒ 10-dim. input vector
”silence” (class no. 1) ⇒ no audio except noise
”talking to audience” (class no. 2) ⇒ speech data
”knocking appreciation” (class no. 3) ⇒ knocking on table
”clapping applause” (class no. 4) ⇒ clapping hands

2. variance and mean, 8-sample window, two 3-axis accel. ⇒ 12-dim. input vector
”lying still” (class no. 1) ⇒ no movement of device
”knocking appreciation” (class no. 2) ⇒ knocking on table with device next to it
”sitting” (class no. 3) ⇒ device in users pocket whilst sitting
”standing” (class no. 4) ⇒ device in users pocket whilst standing
”walking” (class no. 5) ⇒ device in users pocket whilst walking

The ”ZSTAR” was attached to a board marker and was running also a RFIS
classifier, classifing on the following classes:

3. variance and mean, 8-sample window, two 3-axis accel. ⇒ 6-dim. input vector



”lying still” (class no. 1) ⇒ no movement of device
”knocking appreciation” (class no. 2) ⇒ knocking on table with marker next to it
”sitting” (class no. 3) ⇒ marker in users pocket whilst sitting
”standing” (class no. 4) ⇒ marker in users pocket whilst standing
”writing” (class no. 5) ⇒ writing on whiteboard

Data was recorded on several controlled test runs with five subjects. A se-
quence of the classes was simulated to reflect a conference event.

5.1 Fuzzy Classifiers vs. Recurrent Fuzzy Classifiers

One feature of the recurrent fuzzy classifier is the desired classifications fuzzy
uncertainty, the other one is the improvement of the classification process to-
wards normal non-recurrent classifiers. To show the improvements in accuracy,
we compared a normal FIS based classifier with our RFIS classification process.
FIS usese the same algorithm as RFIS, except there is only one iteration of clus-
tering and linear regression. The feedback of the RFIS stabilizes the classification
process significantly. The most incorrect classifications are made when there is
a change from one class to another one. To evaluate this disadvantage we used
a check data set that reflects this insufficiency. The check data set consists of
subsets (∼30 data pairs each) of class specific patterns (many subsets per class),
which where randomly ordered: 1. ”OpenMoko” audio - 1530 training data
pairs (TDP) (382,5 sec) → ∼51 successive class changes (SCC); 1500 check data
pairs (CDP) (375 sec) → ∼50 SCC. 2. ”OpenMoko” acc. - 1410 TDP (352,5
sec) → ∼47 SCC; 1770 CDP (442,5 sec) → ∼59 SCC. 3. ”ZStar” acc. - 660
TDP (165 sec) → ∼22 SCC; 450 CDP (112,5 sec) → ∼15 SCC.

The feedback before the first classification is always 0, which means not iden-
tifying any class. Despite these challenges RFIS performed significantly better
for all three classifiers than FIS. The confusion matrices for both phone classi-
fiers, FIS and RFIS classifiers are shown in table 1 and 2. Table 1 shows the
results of the accelerometer data classifier, where the overall correct classifica-
tions of FIS are ∼62% and for RFIS ∼94%. This shows an improvement of about
32%. The results of the RFIS audio classifier show even more improvement. As
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1 0 100.00 0 0 0
2 0.74 99.26 0 0 0
3 0 8.33 90.00 1.67 0
4 0 0 0.3344 99.67 0
5 2.33 0.33 0.33 10.33 86.67

classes classified onto

1 2 3 4 5

d
e
s
ig

n
a
t
.

c
la

s
s
e
s

1 90.50 3.00 2.33 4.17 0
2 0.74 96.67 2.5926 0 0
3 0 0.33 94.67 3.67 1.33
4 0 0 0 99.67 0.33
5 0 0.33 0.67 8.00 91.00

Table 1. Conf. mat. of FIS ∼62% (left) and RFIS ∼94% (right) accel. class. phone

displayed in table 2, the RFIS classifier shows an enhancement from ∼24% to
∼92%. The classification accuracy of the FIS classifier indicates, that the pat-
terns are not separable with this method. The improvement for the ”ZSTAR”
attached to a board marker is not as significant as with the phone classifiers,
but still amounts to about 2% (from ∼88% to ∼90%). This results shows the
advantage of recurrent classifiers in the field of sensor data processing.
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2 0.20 99.80 0 0
3 0 7.25 82.61 10.14
4 0 0 7.31 92.69

Table 2. Confusion mat. of FIS ∼24% (left) and RFIS ∼92% (right) for audio class.

5.2 How Fusion with Uncertainty Improves the Accuracy

The aim in this evaluation is to indicate the improvement of fuzzy context fusion
towards normal crisp fusion in overall accuracy. To show this, the fusion of
context classes which vary in classification correctness and according to that
in accuracy needs to be made. The differentiation between the classes ”lying
still” and ”knocking appreciation” of the marker classifier provides the desired
uncertainty and shaky classification. The fusion with a more precise classification
of the context ”knocking appreciation” should improve the overall classification.
Improvement is achieved through filtering upon the fused uncertainty level. The
aim is to sort out the false classifications according to a lower uncertainty level.
How a threshold for filtering can be found was shown in [5] and is generally
known as ”receiver operator characteristics”. Another classification qualifies for
fusion, the classification of the audio data on ”knocking appreciation” when the
phone is carried in the pocket. This classification should also improve if being
fused with the same classification of a phone lying freely on a table. The following
combinations of contexts, devices and device states are fused:

1. Phone A is lying on the table and phone B is in users pocket. Both should

recognize context class ”knocking appreciation” through the audio classifier.

2. Phone A is lying on the table recognizing ”knocking appreciation” through

audio and the board marker is also lying on the table recognizing the same class

through the accelerometer classifier.

In the following plots the different fuzzy uncertainty levels of the fused con-
texts are plotted along with the samples from the test data set. The bounded
areas which are signed out with ”correct classified” show time periods the con-
texts actually happened. Mean values of the fuzzy uncertainty for correct and
incorrect classifications are plotted in the figures as dashed lines. The greater
the distance between these dashed mean lines is, the better correct classifications
can be separated from incorrect ones. The results of fusion (1) can be seen in
figure 3(a). The filtering on the uncertainty level at threshold τ = 0.9 improves
the accuracy by about 6% from ∼90% to ∼96%. In this example samples are
not as clearly separable as in the following one, but still an improvement can
be achieved. The results of fusion (2) are shown in figure 3(b), where the fil-
tering on threshold τ = 0.9 improves the accuracy by about 3% from ∼97% to
100%. The problem with filtering is, that along with incorrect classifications also
some correct ones are filtered out. Also the amount of classifications is reduced.
The trade-off can be influenced through the developer via the threshold level.
In our experience it is better to exclude some correct classifications from the
following reasoning process or the application using the contexts, than have in-
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Fig. 3. Fusion (1-top) of fuzzy uncertainty for phone A and phone B classifying on
”knocking app.”, with correct class. marked ’x’ (gray) and incorrect ’+’ (black). Fusion
(2-bottom) of uncertainty for phone B and marker class. on ”knocking app.”.

correct classifications result in faulty system states. The reduction of samples is
of less significance, since much more samples are processed than needed in most
applications.

5.3 Aggregated Contextual Knowledge Improved with Uncertainty

In the last section we have shown that filtering upon the fuzzy uncertainty after
a fusion improves accuracy. An aggregation of new context classes is improved
through the filtering on the uncertainty level. Since aggregation combines differ-
ent contextual knowledge to new information, the reliability depends on every
part of the input. The following combination of contexts, devices and device
states are aggregated to new contexts:

1. Phone A is lying on table recognizing ”clapping applause” with audio clas-

sifier and the board marker is in a users pocket classifying on ”standing” which

is resulting in the implication ”standing ovations”.

The results of the aggregation can be seen in figure 4. For filtering, a threshold
τ = 0.2 was chosen, since the fuzzy uncertainty for the test set is spread over the
whole interval [0, 1]. This circumstance is the result of the product t-norm which
was chosen for the aggregation. The accuracy after filtering improves by about
2% from ∼98% up to 100%. The improvement up to 100%, as in the last two
examples, is rather unusual. But the examples show that the presented approach
is in principle and in practice capable to squeeze out the last 4% (in average) of
detection accuraccy to reach absolute correct classification.

6 Conclusion and Future Work

This paper shows how uncertainty measures are created and used in context
reasoning applications. Our contribution to the computation of uncertainty mea-
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Fig. 4. Uncertainty for aggregation of ”standing ovations”, correct ’x’ & incorrect ’+’.

sures was a recurrent fuzzy classifier (RFIS) system. The evaluation shows that
even in application settings with deliberately unfriendly conditions - especially
fast changing contexts - more than 92% recognition rate can be reached. We
also infer uncertainty measure and used them for filtering outliers before data
fusion and aggregation. This approach boosts our classification result about 4%
to almost 100% recognition rate. The shown application (acclamation detection)
requires only a one-step fusion process. It is to be expected that the effect of
using uncertainty measurement in applications with complex fusion and aggre-
gation processes will be even more prominent. Future work will also research
the inclusion of probabilities combined with the investigated fuzziness in the
inference process and the utilization of recurrence in classification.
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