
A Tool Chain for a Lightweight, Robust and
Uncertainty-based Context Classification System (CCS)
Henning Günther, Firas El Simrany, Martin Berchtold and Michael Beigl
Institut für Betriebssysteme und Rechnerverbund, Technische Universität Braunschweig

Abstract
In this paper we present a tool chain developed to support a Context Classification System (CCS). The CCS is especially
designed to run even on lightweight commodity phones with a high detection rate and low calculation effort. The main
design aspect considered while building the tool chain was the support for most common users and not only developers.
Moreover, the CCS we are using proves to be a robust context recognition method, which supports the gain of both context
classes and a fuzzy uncertainty value describing the confidence of their classification.

1 Introduction

Context-awareness has been a research topic for many
years now. There has been a lot of progress since first ap-
pliances [1], “smart” environments [2] and very rudimen-
tary “smart” devices [3], compared to nowadays context-
aware systems [4] and activity recognition [5]. This
progress was facilitated through a growing number of
toolkits to visualize, transform, interpret and/or classify
sensor data.
The Common Sense ToolKit (CSTK) [6][7] was an early
toolkit which was mainly focusing on the data transfor-
mation and visualization. The CSTK is a collection of
tools, written mostly in C++, that assist in the communi-
cation, abstraction, visualisation, and processing of sen-
sor data. CSTK’s core qualities are its real- time facilities
and embedded systems-friendly implementation, provid-
ing ready-to-use modules for the prototyping and construc-
tion of sensor-based applications. Although it can be used
for offline analysis (i.e., using recorded data files), CSTK
is mainly envisioned as a tool to be applied in online fash-
ion (i.e., using the sensor data as it comes streaming in).
A well known and also a very early toolkit for process-
ing sensor data is the Context Toolkit [8]. The aim of
this toolkit is to make it easy to build context-aware ap-
plications. They claim that context is difficult to use be-
cause, unlike other forms of user input, there is no com-
mon, reusable way to handle it. We are disagreeing with
this proposition, because our approach presents mecha-
nisms to build context classifiers which are reusable due
to their simple and flexible design.
In [9] a GUI-based C++ toolbox is presented that allows
the building of distributed, multi-modal context recogni-
tion systems by plugging together reusable, parameteriz-
able components. The goals of this toolbox are to simplify
the steps from prototypes to online implementations on
low-power mobile devices, facilitate portability between

platforms and foster easy adaptation and extensibility. Our
approach differs in the level the online system gets dis-
tributed. We try to do the classifications on the device and
then infer further context knowledge in a distributed way,
whereas in this paper, we do not present a reasoning. The
reasoning is part of our future work.
Compared to the named toolkits, this work is focusing
only on one strain of sensor data processing, which starts
at the data collection, over to the annotation, the system
identification and ends in a Context Classifying System
(CCS) that runs even on lightweight commodity phones as
the OpenMoko platform. Also, the focus of the proposed
toolkit is not the diversity of algorithms, but the simplicity
of identifying a CCS. The diversity that can be covered
though, lies in the platforms which are supported by the
CCS.

The paper is structured as follows: In Sect. 2, we introduce
the tool chain with it’s different components from data col-
lection to CCS. In sect. 3. the Context Classification Sys-
tem CCS is introduced. Sect. 4 is about the process of
training context classifiers out of real life data using the
tool chain and the CCS. The description of the Data Col-
lection Tool (DCT) can be found in sect. 5 followed by the
description of the Context Annotator Tool (CAT) in sect.
6. In sect. 7 we present th performance evaluations of the
CCS, whereas between different implementations is com-
pared. In the last section we conclude and show some fu-
ture activities.

2 The Tool Chain
The tool chain consists of several tools, algorithms, inter-
faces and databases, all for one purpose, to most simply
as possible identify a CCS. All links of the tool chain and
their interconnections are displayed in figure 1.

Gath-Geva

Clustering

Training Data

Check Data

Subtractive

Clustering

Genetic
Algorithm

Selection of best
combination of initial

cluster centres
Least

Squares

Regression

Calculation

of new dim.

on output

Calculation

of Fitness

(Q. Error)

Fitness Value

Output Vector

Stop

Criteria
Check

Repeat until stop criteria

RFIS

1
2 2

22

3 4 5

Offline CCS Identification Algorithm

Context Classification

System (CCS)

Context Annotator Tool (CAT)

Data Collector Tool

(DCT)
Context Data

Base (CDB)

Figure 1: Tool Chain

2.1 Context Classification System (CCS)
Identifying the Context Classification System (CCS) is the
sole purpose of the proposed tool chain. We chose a Re-
cursive Fuzzy Inference System (RFIS) as the the mapping
function from the features onto a classifiable linear set. Its
accuracy compared to other methods (HMM, GMM, NN,
etc.) is really high, it delivers a fuzzy uncertainty value
with every classification and the calculation time rises lin-
ear with every new rule added to the RFIS.
The decision to use a RFIS mapping function in the CCS is
founded, but there are other methods of mapping which are
also suited. We decided to solely use the RFIS mapping,
because a choice of different mapping methods would only
confuse the user. So, having lots of choice in the mapping
methods contradicts our conception of a simple to use tool
chain and CCS, especially if the user is no expert.

2.2 CCS Identification Algorithm
The CCS identification algorithm consists of a combina-
tion of clustering, least squares and genetic algorithm. Ac-
cording to a training data set, a combination of subtractive
and Gath-Geva clustering identifies the rules of the RFIS
mapping function used in the CCS. The consequences of
the rules are calculated with a least squares method. A ge-
netic algorithm helps optimizing the cluster selection used
in the RFIS mapping.
Here, we decided to develop our own identification algo-
rithm, instead of using a well known approach such as
the ANFIS (Adaptive Network-based Fuzzy Inference Sys-
tem) [10] one. One main aspect is, that the calculation
time for a hybrid training (gradient decent) of the ANFIS
is much higher than for our algorithm. Secondly, there is
no easy way to include recurrence in the ANFIS approach,
whereas the recurrence in our algorithm is a simple shift
operation. Also, the accuracy of a trained multivariate
ANFIS is lower than our used covariate RFIS. Since we

use highly correlated sensor data (accelerometer axis), we
need covariant cluster shapes, which are not supported in
the ANFIS approach.

2.3 Data Collector Tool (DCT)

In order to get different contextual training data for the
CCS (section 3) a simple Python application, the Data Col-
lector Tool (DCT), allows to gather sensor data from the
sensors on the Neo Freerunner (future support for other
platforms, e.g. iPhone, Android, Maemo, etc.) which is
equipped with one audio and two acceleration sensors. The
DCT would be extended to gather data from other sensory
inputs when needed. However the data produced should
be first processed with the CAT, see section 4.1 before it
becomes suitable for training. More on the DCT in section
5.

2.4 Context Annotator Tool (CAT)

The next step is the contextual annotation, and conversion
into training data, of the collected raw data. The Context
Annotation Tool (CAT), is a user friendly tool allowing vi-
sualization of different data sources and to easily associate
suitable recognized context information. Then converting
it into the training data, in a format suitable for the CCS.
More on the CAT is shown in section 6.

2.5 Context Data Base (CDB)

All previously intoduced tools produce, consume or
change data and classifiers. To manage the data, usually
a stream pipes the data from one modul to the next one.
Since we not only have one device producing sensor data
or running a CCS, we need a more flexible approach to
manage the data. We decided to use a data base, to store
the raw sensor data, the annotated data, the preprocessed
data and the trained classifiers.

The Contex Data Bases (CDB) purpose is to collect data
from different users and devices (OpenMoko, iPhone, Mo-
torola Milstone, Nokia N900, etc.) over a indefinite span
of time. Also, all the trained CCS are not only stored, but
also the training and check data are linked through a SQL
string. With this SQL string the identification of each CCS
can be reconstructed and therefore providing total visibil-
ity. The access to the CDB is done via command line or
the Context Web Interface (CWI). Also, the CAT will be
extended to allow direct loading and saving from and to
the database. The implementation of the CDB is currently
in progress, thats why we do not take a closer look into this
module.

FFT

mean/variance

Accelerometer

Microphone

Recurrent Fuzzy

Inference System

(RFIS) Fuzzy Numbers ()

(
)

()

Feature Extraction Mapping Function Fuzzy ClassificationSensoryReal World

Sampled

Signal
Feature

Vector

Mapping

Value

Class

Identifier /

Uncertainty

Value

Signal

Recurrent Edge

Figure 2: Online system architecture for classification and fuzzy uncertainty.

3 Context Classification System
(CCS)

In our implementation we use the Context Classification
System (CCS) for context recognition, which was intro-
duced in [11] (there its called ORFC). The CCS uses a Re-
current Fuzzy Inference System (RFIS) for mapping the
feature vectors on a classifiable linear set. All steps are
diagrammed in figure 2.

3.1 Feature Extraction

For the application in this paper, we used audio and ac-
celeration sensors. We segment the sensor streams into
frames of 64 milliseconds length for audio and 80 mil-
liseconds for acceleration. This frame lengths result in
512 samples (8kHz sampling rate) for audio and 8 sam-
ples (∼100Hz sampling rate) for acceleration. The fea-
tures used for activity recognition with acceleration mea-
surements are mostly variance and mean values, since they
can be calculated with low resource consumption and give
good classification results. These features were used to
pre-process the accelerometer data, where the two 3-axis
accelerometer sensors lead to a twelve-dimensional fea-
ture vector −→v acc

t = (v1, .., v12). For audio data, we use
“ Fast Fourier Transformation (FFT)” to extract frequency
features for the audio classification. Since the dimension-
ality after the FFT (e.g. 512 spectra) is too high to be used
as input for a classifier, mean, variance and frequency cen-
troid are calculated over the two halves of the frequency
spectrum. This leads to a six dimensional feature vector
−→v snd

t = (v1, .., v6).

3.2 Recurrent FIS Mapping

Takagi, Sugeno and Kang [12][13] (TSK) fuzzy inference
systems are fuzzy rule-based structures, which are espe-
cially suited for automated construction. The TSK-FIS
also maps unknown data to zero, making it especially suit-
able for partially incomplete training sets. In TSK-FIS the
consequence of the implication is not a functional mem-
bership to a fuzzy set but a constant or linear function. The

consequence of the rule j depends on the input of the FIS:

fj(
−→v t) := a1jv1 + ..anjvn + a(n+1)j

=

n∑
i=1

aijvi + a(n+1)j

The linguistic equivalent of a rule with Gaussian member-
ship functions in the antecedence part is formulated ac-
cordingly:

IF µ1j(v1) AND µ2j(v2) AND .. AND µnj(vn) THEN fj(
−→v t)

Since in activity recognition we deal with highly corre-
lated features, especially when accelerometers are used,
we use a slight variation of the rule above, which includes
covariant Gaussian functions. The linguistic rule with a
covariant antecedence is formulated accordingly:

IF µj(
−→v t) THEN fj(

−→v t) (1)

The covariant Gaussian MF, depending on the covariance
matrix Σj and the mean vector−→mj , is defined accordingly:

µj(
−→v t) := e−

1
2 (−→v t−−→m j)Σ−1

j (−→v t−−→m j)T (2)

The whole antecedent part of each rule was multiplied with
the usual TSK-FIS to get the respective weight, but with
the covariant MF’s the function is already the weight. The
resulting formula for the covariant TSK-FIS is defined, as
follows:

S(−→v t) :=

∑m
j=1 µj(

−→v t)fj(
−→v t)∑m

j=1 µj(
−→v t)

(3)

The outcome of the mapping at time t is fed back as addi-
tional input dimension for the TSK-FIS mapping at t + 1.
The recurrence not only delivers the desired uncertainty
level, but also stabilizes and improves the mapping accu-
racy.

3.3 Fuzzy Classification
The outcome of the TSK-FIS mapping needs to be as-
signed to one of the classes that the projection should result
in. This assignment is done fuzzily, so the result is not only
a class identifier, but also a membership, identifying the
fuzzy uncertainty of the classification process. Each class

identifier is interpreted as a triangular shaped fuzzy num-
ber (fig. 3). The mean of the fuzzy number is the identifier
itself, with the highest membership of one. An example for
four classes is shown in Fig. 3. The crisp decision (which
identifier is the mapping outcome) is carried out based on
the highest degree of membership to one of the class iden-
tifiers. The overall output of the RFIS mapping is a fuzzy
classification, that is, a pair (CA, µA) of a class identifier
and a degree of membership.

1 2 3 40

−1 1 2 3 40

−1

1

0 0

1

Figure 3: Fuzzy numbers identifying class membership
and fuzzy uncertainty level.

3.4 Fuzzy Uncertainty Filter
The classifications vary strongly with respect to fuzziness
and therefore in the reliability of the RFIS mapping. Since
many more classifications are made than needed for most
applications, a filter upon the fuzzy uncertainty can im-
prove reliability, but also reduces the number of classi-
fications. In order to determine the threshold values for
filtering, we used the “‘Receiver Operator Characteristic
(ROC)” described in [14].

3.5 Implementation
The first implementation of the CCS was done on the Neo
Freerunner phone, developed by the OpenMoko project
[15].

3.5.1 Python

The Python implementation was done first to provide a
proof-of-concept implementation to show that the system
could deliver certain recognition levels. The implementa-
tion consist of three parts:

1. A rule parser

2. A rule engine

3. An input processing module

The rule parser uses the INI file format to load rules into
the system. Each rule file starts with a default section in
which the rule count as well as the dimensions of the rules
are specified:

[DEFAULT]
dimensions = 13
rules = 4

Even though this information is redundant, it can be used
for error checking or making the parsing process much
easier. Following this header, each rule is given as a
separate section. Each rule j is defined through the co-
variance matrix (sigma =̂ Σj), the mean vector (mean =̂
−→mj), the consequence parameter vector (consequence =̂
−→a j = (a1j , ..., a(n+1)j) and the bit masking vector (bitvec

=̂
−→
b j for example

−→
b j = (0000111010101)):

[RULE1]
sigma = 2.502186e-02 -1.515808e-02 ...
mean = -8.953875e+02 -4.980525e+02 ...
consequence = 3.532613e-03 ...
bitvec = 0 0 0 0 1 1 1 0 1 0 1 0 1

With the bit masking vector
−→
b j the rule j of the CCS can

be changed without destroying the original rule. The bit
masking vector therefore gives the possibility to adapt the
CCS to changed conditions or users. More details on the
bit vector masking can be found in [16].
The rule engine essentially implements the algorithm de-
scribed in section 3. All matrix-/vector-operations are im-
plemented using the numpy-package [17], which provides
optimized numerical functions. A class diagram of the rule
engine can be seen in figure 4.

Figure 4: Class diagram of the python rule engine

The input processing module is responsible for fetching
data from the sensor hardware of the phone and for prepro-
cessing it according to section 3.1. Audio data is fetched
using the ALSA (Advanced Linux Sound Architecture),
which provides a clean API for setting the necessary pa-
rameters (sample rate, sample width, etc. . .). Preprocess-
ing is done using numpy routines, except for the cen-
troid calculation, which had to be implemented in python.
Movement data is collected using the exposed sysfs API of
the OpenMoko operating system.

3.5.2 Native (C)

The C implementation was conceived to address the main
problem with the python implementation: performance.
As we will show in section 7, the python implementa-
tion wasn’t able to achieve real-time performance on the
Freerunner phone.

To make the implementation as lightweight and portable
as possible, as few as possible external libraries were used.
The fourier transformation necessary for the audio pre-
processing was implemented using the FFTW-library [18].
Everything else, including vector-/matrix-operations were
hand-coded to avoid dependencies.

4 CCS Identification
In this section we show how to use the tools collecting
training data and how the algorithm for identifying the
CCS works upon the data.

4.1 Obtaining Training Data
Real life data collection, both from audio and acceleration
sensors, was conceived in a way that, at the end of the tool
chain, would produce a specific set of feature vectors as
described in 3.1.
Contexts in real life are correlated, have intersections and
can occur simultaneously. However we needed to define
context classes which are simple and flexible enough to en-
sure re-usability and to avoid overlapping. E.g., it makes
no sense to train a CCS (RFIS) with both acceleration and
audio data. It leads to lower context recognition ratios and
is semantically incorrect. Combining other kinds of sen-
sor inputs, like video and audio or GPS and acceleration,
would be more plausible. Consequent we choose to train
contexts with one sensor type data at a time. Once the set
of context classes, we wanted to collect data for, is defined,
data is collected according to the following procedure:

1. Collecting raw data using Data Collection Tool DCT
(section 5): Both from audio and acceleration sen-
sors, using the DCT, we can collect annotated and
non annotated data. Non annotated data is mere sen-
sor data. Annotated data, is sensor data that was di-
rectly associated to a specific context class and then
bundled into a tar file format. The tar file can be di-
rectly imported in the Context Annotation Tool CAT
(section 6).

2. Processing the data using the CAT: Non annotated
data will be annotated then converted into raw train-
ing data. Annotated data can be edited or directly
converted.

3. Feature extraction according to section 3.1 produces
ready to use training and check data.

All above described steps are visualized in figure 5.

1

Training Data

Real Life Manual

Annotation

CAT

Conversion

CAT

2 2
Annotated Raw

Data

Not Annotated

Raw Data

0

Recording/

Gathering

DCT

FFT for

Audio Data

Mean/

Variance for

Acceleration

Data

3

Figure 5: Training Data Gain using DCT, CAT and Fea-
ture Extraction

4.2 The Identification Algorithm

The mapping of sensor data features onto a classifiable set
is done with a Recurrent Fuzzy Inference System (RFIS).
The RFIS is identified upon an annotated training feature
set via a combination of clustering algorithms, linear re-
gression and genetic algorithm generalization. The algo-
rithm for identifying the RFIS consists of five steps (Fig.
6).

Gath-Geva

Clustering

Training Data

Check Data

Subtractive

Clustering

Genetic

Algorithm

Selection of best

combination of initial

cluster centres
Least

Squares

Regression

Calculation

of new dim.

on output

Calculation

of Fitness

(Q. Error)

Fitness Value

Output Vector

Stop

Criteria

Check

Repeat until stop criteria

RFIS

1
2 2

22

3 4 5

Figure 6: Offline CCS Identification Algorithm

1. Data Annotation and Separation: The training data
are separated according to the class the data pairs belong
to. Clustering on each subset delivers rules that can be as-
signed to each class. 2. Clustering: Subtractive clustering
[19] gives an upper bound on the amount of clusters. How-
ever, because it cannot adapt to covariant cluster shapes, it
needs many fuzzy cluster functions to adapt to the data.
A Gath-Geva clustering [20] is performed upon the set of
cluster centers determined through the subtractive cluster-
ing. Since the number of clusters for the subtractive clus-
tering is higher, a genetic algorithm searches for the best
selection of initial cluster centers for the Gath-Geva clus-
tering. 3. Least Squares: A linear regression identifies
the linear functional consequence of the rules. The least
squares method minimizes the quadratic error, which is the
quadratic distance between the desired output and the ac-
tual output of the TSK-FIS classifier for the training data
set. Minimizing the quadratic error leads to an overdeter-
mined linear equation to be solved. 4. Recurrent Data
Set: The recurrent TSK-FIS is obtained over a data set
that has the output of the previously identified FIS shifted
by one, so the first data pair of the training set has a zero
in the recurrent dimension. All data pairs for time t > 1
have the output of the FIS mapping of t+1 in the recurrent
dimension. For this data set the steps 1 to 3 are repeated. 5.
Stop Criterion: We could not find a general stop criterion,
since two demands need to be met: the resulting classifier
needs to have high accuracy and the outcome needs to have
an uncertainty level that is profitable for reasoning. There-
fore, the developer has to decide according to a separate
check data set, which results are suitable for the classifier
and its uncertainty levels. The steps 1 to 4 are repeated and
graphically observed until these requirements are met.

4.3 Implementation

The CCS identification algorithm is currently implemented
in Matlab. The implementation consists of different scripts
for the clustering, the linear regression and the genetic al-
gorithm. In future we want to translate the Matlab scripts
into python, so not only users with a Matlab license can
use the algorithm.

5 Data Collection Tool (DCT)

The Data Collection Tool is a simple Python application
that gathers audio and acceleration data on the Freerun-
ner phone. Upon startup, it fires up two threads: The au-
dio thread records audio samples of the required frequency
(8000Hz) and saves them as an audio file on the disk (either
in WAV- or, to conserve space, FLAC-format). The record-
ing time of the audio sample is given in the filename to
ease the finding of previous recordings. The second thread
reads acceleration data from the two acceleration sensors
of the phone and writes them with their corresponding
timestamp into a simple text file. The DCT also allows
the user to associate contexts from a list of contexts to the
gathered data. The user can whenever he wants change
the current context annotation. The resulting gathered data
and the the list of annotations is saved in the annotation
package format, described in the following section 5.1.

5.1 Annotation Package Format

To provide easy data exchange between the tools that col-
lect and manipulate context annotated sensor data, a new
file format (fig. 7) was designed. The idea is to couple the
annotation data with the actual sensor data it relates to.
An annotation package is a file that combines sensor data
from multiple sources with annotation data. The outer
layer of the file is a tarball-archive. It always contains an
index file that specifies the content.

Figure 7: Annotation Package structure

Each sensor data is represented by a file in the tarball and
an entry in the index file (fig. 8).The index file specifies
meta-information for the sensor files, for example the start
time of an audio file. Context annotations are also stored
in the index file.

Figure 8: Example of an index file

6 Context Annotator Tool (CAT)

The Context Annotator Tool (CAT) is described in this sec-
tion.

6.1 Purpose

To generate training data for the algorithm, the collected
sensor data has to be annotated with the context in which it
was collected. In order to associate sensor data with con-
text information, it is necessary to

1. Read the sensor data from different formats

2. Display the sensor data

3. Allow the user to annotate the data with context in-
formation

4. Export the annotated data into a format suitable for
the training algorithm

The Context Annotator Tool was designed to put all these
mechanisms into one easy to use tool.

6.2 Design aspects

Most sensor data can be visualized as a two dimensional
graph with a time and value axis. To be able to distin-
guish between different sensors, each sensor data should
be displayed separately, but it should nonetheless be pos-
sible to see which sensor data happened at the same time.
To achieve this, a horizontal layout, with the sensor data
aligned to a global time axis, is a good choice.
Good visualization of the annotations can be achieved by
overlaying the graph with colored boxes representing the
contexts. To ease the process of associating a context to an
audio sample, playback of audio samples was integrated
by allowing the user to select a time slot and playing the
contained audio data.

Figure 9: Screenshot of Context Annotator Tool (CAT)

6.3 Implementation

The Context Annotator Tool is written in Python (for
class diagramm see fig. 10) to provide good extensibil-
ity, platform-independence and speed of development. For
the data visualization the Matplotlib [21] toolkit was used,
which provides Matlab-like plotting capabilities. The GUI
is implemented on top of the GTK+ toolkit to allow the
tool to run on as many platforms as possible. Audio load-
ing, processing and playback is done using the GStreamer
framework [22], which frees the implementation from wor-
rying about things like audio codecs and output.
The central data structure of the tool is the annotations
structure. It keeps track of all context annotations (start-
/end-time and name). Other components can register as
listeners if they want to be informed if an annotation is
added, deleted or updated.
Each sensor data display is represented by a display com-
ponent. It renders the sensor data using Matplotlib and re-
acts to user interaction (scrolling, adding new annotations,
etc.).
The sensor data is managed by the source component. It
is responsible for loading sensor data from various formats
(audio file, accelerator log file, etc.).

Figure 10: (Partial) class diagram of the CAT

The implementation is designed to be as flexible and ex-
tensible as possible: New sensor data types can easily be

added to the system by simply extending the source base
class. The class must implement methods to read and write
the sensor data from or into a file, load and store the meta-
information into XML and to query the user for extra in-
formations (for example when the sensor data starts).

7 Performance Evaluation of CCS

The most critical performance criterion is the run time,
since the algorithm has to be able to process data in real
time. To evaluate the ability of the system to process the
incoming sensor data fast enough to keep up, it is first nec-
essary to find out how many classifications have to be done
per second.
The audio system delivers 8000 samples per second; each
classification requires 512 samples. Thus the system has
to perform 15.625 audio classifications to keep up with the
incoming data. Similarly, the acceleration sensor provides
100 samples per second and 8 samples are required per
classification, so the system must be able to perform 12.5
acceleration classifications per second.
Each classification process can be broken down into two
measurable units:

Preprocessing in which the data fetched from the sensor
is transformed according to section 3.1.

Rule evaluation in which the feature vector is classified
by evaluating the rules according to section 3.2.

The run time for each of these units for each sensor
was taken by building the average over 1000 subsequent
runs of the algorithm to account for fluctuations. Ta-
ble 1 shows the running times for each implementation.
It can be seen that the python implementation requires
0.006s + 0.040s = 0.046s per acceleration classification
and 0.036s+0.017s = 0.053s per audio classification. Be-
cause the system does 15.625 audio classifications per sec-
ond, it requires 15.625 · 0.053s = 0.828s processing time
per second for audio classification and 0.575s for acceler-
ation data, meaning that the system would require 1.4s of
processing time per second, which means that the system
would need 1.4 times the processing power it actually has
to provide real time performance.
By significantly dropping the runtime of the accelerator
preprocessing and the rule evaluations, the native C im-
plementation can provide far better performance, leaving
about half of the processing power of the CPU for other
purposes:

accel. audio req.
preproc. eval. preproc. eval.

python 0.006s 0.040s 0.036s 0.017s 1.40
c 0.00012s 0.00093s 0.03255s 0.00047s 0.53

Table 1: Running times for different implementations
The numbers also reveal one of the weaknesses of the
Openmoko hardware: It takes a long time to calculate the

fourier transformation, because the processor lacks a float-
ing point unit. There could be an opportunity to improve
performance by using an integer FFT. This possibility is
however left open for future works.

8 Conclusion and Future Work
We have shown that it is possible to design and implement
a tool chain that supports a Context Classification Systems
(CCS), which is easy to use, transparent and robust. Also,
the CCS can provide certain features, such as robustness,
accuracy and uncertainty, other classifiers can not. De-
tails of the general layout as well as implementation details
were given for each tool involved in the chain. Two differ-
ent implementations of the CCS were presented and real
time performance of these implementations was evaluated.
We were able to show that a real time classification sys-
tem based on our approach is indeed not only feasible with
current technology, but can also provide high accuracy and
uncertainty in classifications.
As mentioned before, there are still many things to be
done: We will proceed implementing the described Con-
text Data Base and work on some performance issues of the
Context Annotator Tool. As we designed the implementa-
tions to be platform independent, we also began porting the
CCS to other platforms, for example the iPhone, the Mo-
torola Milestone (Android) and Nokia N900 (Maemo5).
This will allow more people to explore our tool chain and
also extend our choices of sensors.

Acknowledgments: This work was funded by the NTH
School for IT Ecosystems. NTH (Niedersaechsische Tech-
nische Hochschule) is a joint university consisting of Tech-
nische Universitaet Braunschweig, Technische Universi-
taet Clausthal, and Leibniz Universitaet Hannover.

References
[1] M. Beigl, H.-W. Gellersen, and A. Schmidt, “Medi-

acups: Experience with design and use of computer-
augmented everyday artefacts,” Computer Networks,
Special Issue on Pervasive Computing, Elsevier, Vol.
35, No. 4, 2001.

[2] C. D. Kidd, R. J. Orr, G. D. Abowd, C. G. Atkeson,
I. A. Essa, B. MacIntyre, E. Mynatt, T. E. Starner, and
W. Newstetter, “The aware home: A living laboratory
for ubiquitous computing research,” in Proceedings
of the Second International Workshop on Coopera-
tive Buildings (CoBuild’99), 1999.

[3] A. Schmidt, K. A. Aidoo, A. Takaluoma,
U. Tuomela, K. V. Laerhoven, and W. V. de Velde,
“Advanced interaction in context,” in Handheld

and Ubiquitous Computing, First International
Symposium, HUC’99, ser. LNCS, H.-W. Gellersen,
Ed., 1999.

[4] M. Buettner, R. Prasad, M. Philipose, and D. Wether-
all, “Recognizing daily activities with rfid-based sen-
sors,” in UbiComp, 2009, pp. 51–60.

[5] V. W. Zheng, D. H. Hu, and Q. Yang, “Cross-domain
activity recognition,” in Ubicomp ’09: Proceedings
of the 11th international conference on Ubiquitous
computing. New York, NY, USA: ACM, 2009, pp.
61–70.

[6] K. van Laerhoven, M. Berchtold, and
S. Reeves, “Common sense toolkit (cstk),” 2004,
http://cstk.sourceforge.net/.

[7] K. V. Laerhoven, M. Berchtold, and H.-W. Gellersen,
“Accessing and abstracting sensor data for pervasive
prototyping and development,” In the Adjunct Pro-
ceedings of Pervasive, 2005.

[8] A. K. Dey and G. D. Abowd, “The context toolkit:
Aiding the development of context-aware applica-
tions,” in In the Workshop on Software Engineering
for Wearable and Pervasive Computing, 2000.

[9] D. Bannach, K. S. Kunze, P. Lukowicz, and O. Amft,
“Distributed modular toolbox for multi-modal con-
text recognition,” in ARCS, 2006, pp. 99–113.

[10] J.-S. R. Jang, “Anfis: Adaptive-network-based fuzzy
inference system,” IEEE Transactions on Systems,
Man and Cybernetics, 1993, vol. 23 pp. 665-685,
1993.

[11] M. Berchtold and M. Beigl, “Increased robustness
in context detection and reasoning using uncertainty
measures - concept and application,” Proceedings of
the European Conference on Ambient Intelligence
(AmI’09), 2009.

[12] T. Tagaki and M. Sugeno, “Fuzzy identification of
systems and its application to modelling and control,”
Syst., Man and Cybernetics, 1985.

[13] M. Sugeno and G. Kang, “Structure identification of
fuzzy model,” Fuzzy Sets and Systems, 1988.

[14] M. Berchtold, C. Decker, T. Riedel, T. Zimmer, and
M. Beigl, “Using a context quality measure for im-
proving smart appliances,” IWSAWC, 2007.

[15] “Openmoko.” [Online]. Available: http://www.
openmoko.com/

[16] M. Berchtold, T. Riedel, K. van Laerhoven,
and C. Decker, “Gath-geva specification and ge-
netic generalization of takagi-sugeno-kang fuzzy
models,” SMC08, October 12-15 2008. [On-
line]. Available: http://www.ibr.cs.tu-bs.de/users/
berch/publications/SMC08.pdf

http://www.openmoko.com/
http://www.openmoko.com/
http://www.ibr.cs.tu-bs.de/users/berch/publications/SMC08.pdf
http://www.ibr.cs.tu-bs.de/users/berch/publications/SMC08.pdf

[17] E. Jones, T. Oliphant, P. Peterson et al., “SciPy:
Open source scientific tools for Python,” 2001–.
[Online]. Available: http://www.scipy.org/

[18] M. Frigo and S. G. Johnson, “The fastest Fourier
transform in the West,” Massachusetts Institute of
Technology, Tech. Rep. MIT-LCS-TR-728, Septem-
ber 1997.

[19] S. Chiu, “Method and software for extracting fuzzy
classification rules by subtractive clustering,” IEEE
Control Systems Magazine, pp. 461–465, 1996.

[20] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy
clustering,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol 11(7), pp 773-781,
1989.

[21] J. D. Hunter, “Matplotlib: A 2d graphics envi-
ronment,” Computing in Science and Engineering,
vol. 9, pp. 90–95, 2007.

[22] “GStreamer – open source multimedia framework.”
[Online]. Available: http://www.gstreamer.net/

http://www.scipy.org/
http://www.gstreamer.net/

	Introduction
	The Tool Chain
	Context Classification System (CCS)
	CCS Identification Algorithm
	Data Collector Tool (DCT)
	Context Annotator Tool (CAT)
	Context Data Base (CDB)

	Context Classification System (CCS)
	Feature Extraction
	Recurrent FIS Mapping
	Fuzzy Classification
	Fuzzy Uncertainty Filter
	Implementation
	Python
	Native (C)

	CCS Identification
	Obtaining Training Data
	The Identification Algorithm
	Implementation

	Data Collection Tool (DCT)
	Annotation Package Format

	Context Annotator Tool (CAT)
	Purpose
	Design aspects
	Implementation

	Performance Evaluation of CCS
	Conclusion and Future Work

