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Abstract. This demonstration aims to show the functionality of our tool chain,
which supports the robust Context Classification System (CCS) system. The
tool chain is developed to collect and annotate sensor data, extract features and
to identify the CCS with machine learning techniques. A hands on experience
starts by collecting data, visualization and annotation, identification of the CCS,
deployment on a commodity phone (e.g. OpenMoko Freerunner [1]) and then test
of the CCS through the user. Due to the novel design of our CCS, we are able
to detect a high amount of activities (>10 classes with acceleration sensor) and
contexts (>5 classes due audio) on the phone in realtime with less than 50%
processor load.

1 Overview

Fig. 1. Example activities recognizable in demonstration and demo equipment.

The purpose of this demonstration is to show the capabilities of our Context-Tool
Chain (CTC) [2] and our novel robust Context Classification System (CCS). We will
show that using our CTC simplifies the process of collecting and annotating sensory
data, the training of classifiers and the deployment of the CCS. Also, the usage of
the CCS will demonstrate the capabilities of the classification system, which are high
recognition rates for a high amount of classes with a low calculation effort in mean. The
CCS also delivers a fuzzy uncertainty with every classification, whereas a filtering upon
this demonstrates a further improvement in reliability.



First, we show how data is collected and possibly annotated with the Data Collec-
tor Tool (DCT). The data can directly be annotated on the phone with the DCT or,
in a second step, be annotated afterwards in the Context Annotator Tool (CAT). The
CAT also is responsible for data conversion and visualization. In a next step the fea-
tures are extracted and the identification of the CCS is done. The identification is done
through our novel machine learning algorithm. After identification, the parameters get
transmitted to the phone, where a parser interprets them and builds the running CCS.
Finally, the CCS can be evaluated through the user, whereas the filtering upon the fuzzy
uncertainty can show further improvements. All steps are visualized in figure 2.
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Fig. 2. Training Data Gain using DCT, CAT and Feature Extraction

2 Classification ToolChain

The ToolChain consists of the following tools:

Data Collector Tool: The DCT is a simple application which runs on a mobile phone
and collects sensor data. The data is stored using the Annotation Package Format, a
file format that combines sensor data with annotation data. Annotating the data on-
the-fly with context information is also possible. The tool will run on a OpenMoko
Freerunner mobile phone for the demonstration.

Context Annotator Tool: The recorded sensor data is then annotated using the
CAT. This tool presents the sensor data as graphs to the user, who can then anno-
tate it with context information. Being implemented in python the CAT can run on
almost any computer platform. See figure 3 for a screenshot of a running instance.

Context Classifier System (CCS) identification algorithm: The identification al-
gorithm is used to generate suitable classifiers from the annotated sensor data. The
algorithm uses a combination of a clustering algorithm, linear regression and genetic
algorithm generalization. Details of the algorithm are described in [2].

Context Classification System: The CCS is (for performance reasons) implemented
as a native application on the OpenMoko Freerunner. It fetches sensor data and
infers the current user-context using the algorithm described in section 3. Context
information is either presented to the user (on the phone or remote on a laptop) or
e.g. used in an application to switch phone profiles.



Fig. 3. The Context Annotator Tool and a Freerunner running the Context Collector Tool

3 Context Classification System (CCS)

The CCS consists of several steps of processing from a real world value to a tuple of class
and reliability. The first step is the sensory, that converts the real world signal into a dig-
ital measurement. Secondly, the desired features are extracted from the measurements.
In the third step the Recurrent Fuzzy Inference System (RFIS) maps the features onto
a classifiable linear set. The linear set is fuzzily classified according to designated fuzzy
numbers in the last step. 1. Feature Extraction: Sensors for classification are e.g.
audio and acceleration. The features used for classifying the acceleration measurements
are mostly variance and mean values, since they can be calculated with low resource
consumption and give good classification results. For audio data the standard extrac-
tion method is a ”Fast Fourier Transformation (FFT)”. Since the dimensionality after
the FFT is too high to be used as input for a classifier, mean, variance and frequency
centroid is calculated. 2. Recurrent FIS Mapping: A TSK-FIS [3] is used to map
the extracted features onto a set, whose values can be assigned to a class identifier in
a separate classification process. The outcome of the mapping at time t is fed back as
additional input dimension for the TSK-FIS mapping at t+ 1. The recurrency not only
delivers the desired reliability value, but also stabilizes and improves the mapping ac-
curacy [4]. Our goal is to classify on as many classes as possible. As shown in [5] the
abilities of monolithic classifiers are limited, so we use a divide and conquer approach to
cope with this problem. Instead of using one classifier to classify on all classes, we use
many classifiers each classifying on a small subset of classes. To recognize not only the
respective classes, but also the transition between classifiers, each classifier classifies on
a complementary class as well. All classifiers are chained in a dynamic queue, where the
last classifier classifying on a class different from the complementary class is put first in
queue. 3. Fuzzy Classification: The assignment of mapping result to a class is done
fuzzily, so the result is not only a class identifier, but also a membership, representing the
reliability of the classification process. Each class is interpreted as a triangular shaped
fuzzy number. The mean of the fuzzy number is the identifier itself. The crisp decision
(which identifier is the mapping outcome) is carried out based on the highest degree of



membership to one of the classes fuzzy number. The overall output of the RFIS mapping
and the classification is a tuple (CA, µA) of a class identifier and the membership to it.

Two of the above described CCS are running on the phone, one is classifying the
audio, the other one the accelerometer data stream. The CCS for the audio data stream
is producing about 16 and the CCS for the accelerometer about 13 classifications per
second. A filtering upon the fuzzy uncertainty (µ) reduces the amount of data, but
increases reliability sufficiently. The filtering will be part of the demonstration.

4 Summary

In this demonstration the participant can have a hands-on experience of building a
context-aware system for a commodity phone. The experience starts by collecting data,
whereas the participant does the activities she wants to recognize. An annotation of
the data set can be done on the phone or in a separate process with a graphical tool.
The machine learning algorithm produces the classification system, which is deployed
onto the phone. In an evaluation phase, the participant can experience the accuracy and
performance of the built system. A filtering upon a fuzzy uncertainty should show, how
the accuracy can be improved.
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Fig. 1. Example activities recognizable in demonstration and demo equipment.

1 Hardware requirements

The demonstration uses the following hardware components:

– 2-3 OpenMoko Freerunner mobile phones
– 1-2 laptop computers
– Possibly a W-LAN router

The laptop computer is connected via W-LAN (or if wireless is buggy via USB) to both
phones. The space the demo requires is as large as a table the laptop(s) are placed on
and an additional area of 1m×1m for the user to do the activities.

2 Procedure

1. The user uses a OpenMoko Freerunner phone to collect sensor data. This requires the
user to perform certain activities (e.g. walking around, sitting down and/or dancing)
or audio contexts (e.g. talking, typing on a keyboard and/or clapping hands). The
respective annotation can here already be done on the phone.

2. The collected data is uploaded to the laptop, where its investigated and possibly
annotated.

3. A set of classifiers is generated on the laptop through machine learning.
4. The classifiers are uploaded to the phone and the user can try them by performing

the same activities used in step 1. The recognized activities and contexts are shown
on the phone and remote on a laptop. Possibly a application of automatic phone
profiles is triggered.


