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Abstract—Modern cities, with large population and com-
plicated infrastructures, are complex entities with non-linear
and dynamic properties that challenge the city management.
Therefore, as the first step towards the goal of thorough
understanding of the phenomena, pervasive urban sensing have
become a cornerstone of future smart city that enhance the
interplay between the cyber space and the physical world.
We introduce a taxi-based pervasive urban sensing system
and its key algorithm, aiming at the quantitative study of
the correlation between human activities and environmental
changes. Our contributions are twofold. First, we propose an
urban crowd-sourcing framework that take automobiles as
participatory mobile agents to the sensing tasks, and imple-
mented a prototype in Beijing. Second, we design a Spatial-
Temporal Manifold Learning (STML) algorithm to analyse
the correlation between physical processes. Based on noisy
and partially labelled dataset that are collected by pervasive
urban sensor networks, we evaluate STML’s performance by
analysing correlation between the traffic density and the air
quality. The results show great potential of STML for future
urban sensing applications.

I. INTRODUCTION
The nowadays information system is enabled by advanced

sensor technologies with sophisticated capability to achieve
information of surrounding environments. In everyday life,
we are essentially surrounded by a great variety of sensing
devices, from the CCD camera in the mobile phones to
the collision sensors in our cars. Crosss-domain data-mining
of the sensor data that reveals hidden connections in real-
time may change the paradigm of urban management by
providing revolutionary improvement in data accessibility,
information provision and policy-making transparency.
One of the major driving forces of pervasive sensing is the

need for better, greener and smarter urban live. A city can be
reasonably considered as an inherently human-driven self-
organizing structure, whose dynamics is driven by the social
behavior of its residents, which is known to be strongly relat-
ed to the environmental changes. Exploring the correlation
between the human activities and the environmental changes,
as well as the resource consumption, will be beneficial in
many aspects in city management including the city plan, the
resource utility optimization, the convenience improvement,
etc.

A great shift of methodologies occurs in urban dynamic
study, from the model-driven paradigm to the data-driven
paradigm. In 1960s, regional modelling was developed to
present a geographical system, which account for the ex-
change of population, goods, capital in the area. Ecological
models deal with several qualitatively different types of re-
lationships between a small number of components, aiming
at understanding the most general laws of urban dynamics.
With the development of the general theory of complex
systems, cellular automata models and multi-agent models
became popular to describe the macro-processes resulting
from collective behaviour at the micro-level of land plots and
migrating city individuals[1]. Nowadays, however, ”straight
forward” data mining and pattern learning methods become
alternatives of model-based prediction, especially when we
consider a metropolitan area with complex activities and
interactions among millions of people, where a deterministic
model is hard to formulate.
Moreover, former researchers are usually civil engineering

experts who study urban phenomena as separated physical
processes, based on their own domain knowledge. Now,
what is more interesting is the correlation between different
physical processes. Relationship among different types of
processes and events, such like the traffic, the air quality, the
energy consumption, could be studied as a whole dynamic
system, so as to better predict the dynamics of the urban
system.
To achieve this goal, at least two aspects of technical

challenges should be considered. One is how to collect
meaningful multi-dimensional dataset in a city scale? And
the other is how to perform efficient analysis for the oceans
of data (if available) to obtain deterministic and informative
knowledge and prediction model.
For address the first challenge, we propose a pervasive

urban sensing framework which takes automobiles as mobile
agents to perform crowd sensing on the city scale. Nowadays
crowd sensing is not a new concept already, especially when
smart phones equipped with GPS receivers, compass mod-
ules and accelerometers become popular so that tasks, such
as location-aware micro-blogging[2], personalized estimates
of environmental impact and exposure[3], road/driving con-
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dition profiling[4] , and live traffic information sharing[?],
can be performed on a participatory basis. However, in
a smart-phone based participatory sensing system, issues
of sensor scalability, data consistency and user privacy
arise as obsticles. Therefore, an alternative solution was
proposed to embody sensors to the vehicle fleets, which are
more consistent, powerful and less concerned about privacy.
CarTel[5] and MobEye[6] are two piloting projects.
Great challenge remains, however, as there are many

characters not considered. For instance, the uncertainty of
the communication channel, the sampling density and the
vehicle mobility patterns will become more complex as the
number of sensing devices scales. In our design, the major
concern is to protect the sensing performance against the
sparse distribution and the diversified mobility patterns of
vehicles that challenge every aspect of design.
For the second question, we propose a novel Spatial-

Temporal Manifold Learning (STML) algorithm to analyse
the correlation between arbitrary pair of physical processes.
STML aims to solve the essential challenges in the machine
learning of urban sensing data:
1) The unavoidable noise or imprecision in training data
adds uncertainty to the reconstruction process.

2) The sparsity of data obtained from crowd urban sens-
ing causes incompleteness and heterogeneity of dataset
both in space and time.

3) Quantitative analysis among different physical pro-
cesses in different measurement is difficult. Semantic
abstraction are required to gain meaningful informa-
tion.

In this paper, we report our work progress in the pervasive
urban sensing and city dynamics study. In section II, we
briefly review our work foundations in three aspects with
regard to three inter-related technical planes: a) pervasive
urban sensing, b) opportunistic communication and network-
ing, c) city dynamics and behaviour study. In section III, we
propose our prototype that performs urban environmental
monitoring and the deployment on vehicular networks. In
section IV, we propose a novel machine learning framework
named Spatial-Temporal Manifold Learning(STML) algo-
rithm. In section V, we share the preliminary results on the
spatial-temporal distribution of traffic and air quality, which
reveals the unseen information and potential cross-domain
usage of sensor data. Finally, we conclude this paper and
propose several further directions in section VI.

II. WORK FOUNDATIONS IN URBAN AREA CROWD
SENSING AND CITY DYNAMICS STUDY

In this section, we briefly review our efforts towards better
understanding of city dynamics in the context of pervasive
sensing. Basically, we can decompose our work onto three
inter-related technical planes, namely, the pervasive urban
sensing, the opportunistic communication and networking,
and the city dynamics behaviour study. In this section, we

introduce our work foundations and perspectives for each
technical plane.

A. Pervasive urban sensing

Pervasive urban sensing provides the ground truth to the
urban dynamics study. In this sub-section, we will discuss
the data description of urban environmental monitoring,
application of compressed sensing technique in vehicular
sensor network and some open questions.
1) Urban data description: To model a pervasive urban
sensing system, we firstly need to define the range
of data description which is required by the further
study. To be specific, we refer to the classification
methodology in context-aware system, which study
how to represent contexts in a computation form
and how to support an operational life-cycle in using
context-aware systems[7].

2) Compressed sensing: Another aspect of urban sensing
study is on the sensing capability and the related signal
processing techniques. [8] proposed a cooperative data
sensing and compression approach with zero inter-
sensor collaboration overhead based on sparse random
projections. The spatial correlation of signals (temper-
ature, humidity, gas emission, et al.) is found to be
beneficial to compressed sensing and improve recon-
struction accuracy with much smaller communication
load.

B. Opportunistic Communication and Networking

Communication and networking in urban area is the
enabling technology to aggregate data and upload to the
fusion center or computing cloud. The main challenge of this
part is about cost, which is the most influential factor when
the scale (number of nodes) of network becomes larger.
Opportunistic communication and networking approach has
been studied as low-cost solution for the urban sensing.
1) Urban short range communication: [9] studied the
urban environmental impacts over the performance
of IEEE 802.15.4c, which is a low-bit-rate wire-
less communicate standard that enables global inter-
connectivity and inter-operability amongst Wireless
Personal Area Network(WPAN) transceivers from dif-
ferent manufacturers. Several real urban scenarios are
investigated, including car to car, car to infrastructure
communication under heavy and light traffic condi-
tions, with LOS(Line-Of-Sight) and /or NLOS(Non-
Line-Of-Sight) paths. Results show the most important
performance influential factor is the availability of
LOS, while the speed of vehicles is not as impacting
as expected.

2) Delay Tolerant Networking (DTN): DTN is a typical
opportunistic networking approach, which usually use
moving vehicles to improve sensing coverage of the
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city. [10] proposes a distributed information dissem-
ination algorithm, namely DAWN(Density Adaptive
routing With Node awareness), which enables the
vehicle’s awareness of its neighbour density, and the
transmission behaviours are fine-tuned according to
the node density to maximize the data delivery proba-
bility with the constraint of the local channel capacity
and the maximum allowable delay.

C. City dynamics and behaviour study
As pervasive sensing becomes available with large volume

of sensory data about the environmental changes and human
activities on the city scale. The analysis of the data arises
to be a challenge. There are still a lot of open questions
in the urban behaviour study, the pattern learning and the
knowledge discovery.
[11] proposed a context-based framework, namely, the

Context-Aware Metropolitan Sensing (CAMS), to rise to
the increasing challenges in the context acquisition, fidelity,
dynamics and complexity. CAMS is a high level framework
that focuses on knowledge discovery among distributed or
mobile users by three stages: context acquisition (local
data collection and context sharing), context management
(filtering, composition and storage), and context utilization
(discovery, adaptation and annotation).

III. PROTOTYPE AND IMPLEMENTATION
Although many smart phones nowadays are computation-

ally powerful, yet they cannot support environmental urban
sensing due to lack of appropriate sensors, for instance, the
weather sensor (temperature, humidity, etc.) or the air quality
(CO,SO2,H2S, particulate matters, etc.) because of the
volume, weight and cost constraints. We design and develop
a prototype that embodies specific sensors to perform envi-
ronmental sensing, especially for the temperature, humidity
and carbon monoxide information.

Figure 1. Pervasive Urban Sensing Prototype (Left: Sensing platform, size
15cm×40cm, Right: Environmental sensing module, size 10cm×15cm)

The prototype is designed to be equipped on vehicles,
with each device including two inter-connected parts (Fig.1).
One is environmental sensing module, which is installed on
the roof of buses, and the sensors of temperature, humidity

Figure 2. Deployment on Tour Buses

and carbon monoxide sensors, as well as a short range RF
transceiver are integrated in it. The other is the sensing
platform, which is installed in the passenger cabin, built
with an ARM-11 based main board, a GPS module, cellular
module, a 3-axis accelerometers, a battery and DC adaptor
that converts 12V DC from the vehicle to 5V DC that is
compatible with the inside modules.
The processor is Samsung S3C6410 works at 533MHz,

with a 256M RAM and 1G Flash. All the extended modules
use serial ports to communicate with the main board. All
the sensors are comodity-off-the-shelf products with factory
calibration. An embedded version of Linux (OS version
2.6.36) is used as operation system on main board, with
a Qt graphical system.
The sensing task is performed as a real-time application

that schedules the working pattern of GPS, accelerometers
and other sensors. An independent thread is kept for short
range communication with close-by devices.
We have implemented this prototype on 15 tour buses

in Beijing (Fig.2). The testbed has been running for three
months. A rich information dataset is obtained as the first-
hand information about the dynamics of the Beijing dynam-
ics.

IV. A MANIFOLD LEARNING FRAMEWORK ON CITY
DYNAMICS STUDY

A. Classical Regularization Theory in Supervised Learning

Supervised learning are described as an inverse prob-
lem, in the sense that its formulation builds on knowl-
edge obtained from examples of the corresponding direct
problem, which involves underlying physical laws that are
unknown[12]. To be specific, let the training set be described
by

Input signal:xi ∈ Rm, i = 1, 2, . . .N (1)
System response:di ∈ R, i = 1, 2, . . .N (2)

The inputs are m dimensional vectors, while the output
in our case is assumed to be one dimensional. The purpose
of the learning process is to determine an approximation
function to the unknown system, denoted by F (x).
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In most cases of engineering, inverse problems are ill-
posed, according to Hadamard’s definition. Tikhonov regu-
larization theory was introduced to restrict the solution of
the hypersurface reconstruction problem to compact subsets
by minimizing the augmented cost function[13].

Ψ(F ) = Ψs(F ) + λΨc(F ). (3)

where, Ψs(F ) denotes the empirical cost function. In the
least-square estimator case,

Ψs(F ) =
1

2

N∑
i=1

(
di − F (xi)

)2
. (4)

Ψc(F ) denotes the regularizer, which relies on certain
geometric properties of the approximation function F (xi).

Ψc(F ) =
1

2
‖DF‖2, (5)

where D is a linear differential operator.

B. Generalized Regularization Theory and Manifold Learn-
ing
From a practical perspective, it is usually very hard to per-

form manual labelling of examples, especially in the urban
sensing scenarios. In contrast, the collection of unlabelled
examples is relatively inexpensive and much easier in the
real-world deployment of pervasive sensing system. Given
these practical realities, semi-supervised learning could be
used to exploit the availability of both labelled and unla-
belled examples in the learning process.
Classical regularization theory discussed above incorpo-

rates a single penalty function that reflects the ambient
space, where the labelled examples are generated. Gener-
alized regularization theory extends the classical theory by
incorporating a second penalty function that reflects the
intrinsic geometric structure of the input space[12]. It could
be applied to the semi-supervised learning, based on labelled
as well as unlabelled data.
To be specific, the input dataset {xi}

N
i=1 is divided into

two subsets. One is a subset of data points denoted by
{xi}

l
i=1, for which a corresponding set of labels denoted by

{di}
l
i=1. The other subset denoted by {xi}

N
i=l+1

, for which
the labels are unknown.
Consider the labelled examples (x, d) generated in ac-

cordance to the joint distribution function px,D(x, d), and
the unlabelled examples x ∈ X generated according to the
marginal distribution function px(x). We suppose there is
coherence between the two kind of data, i.e. if two input
data points xi and xj are close to each other in the intrinsic
geometry of the marginal distribution function px(x), then
the conditional distribution function px|D(x | d) evaluated
at the data points x = xi and x = xj behaves similarly.
To this end, we verify the expression in Eq.(3) as

Ψ(F ) = Ψs(F ) +
1

2
λAΨc(F ) +

1

2
λIΨI(F ) (6)

To find proper ΨI(F ), Belkin proposed manifold method
which implies the intrinsic geometric structure of the input
space[14]. Inspired by Belkin’s work, we pursue the kernel
approach based on manifold regularization. By manifold, we
mean a k-dimensional topological space embedded in an
n-dimensional Euclidean space where n is greater than k.
Suppose we have a set of unlabelled examples denoted by
x1,x2, . . ., which are all n-dimensional. These examples can
be represented as a set of data points in an n-dimensional
Euclidean space. Most unsupervised-learning algorithms op-
erate only on the ambient space, represented by the examples
x1,x2, . . .. Suppose, however, that we are able to construct
a manifold of lower dimensionality than n, such that the true
data may reside on or close to that manifold. Then it may be
possible to design a more effective semi-supervised learning
algorithm by exploiting the underlying geometric properties
of the manifold in addition to those of the ambient space.
This will provide a novel way of approaching problems of
learning algorithms on manifolds that are revealed through
sampled data points.
We use spectral graph theory to model a manifold[14].

Consider the training sample

X = {xi}
N
i=1, (7)

which embodies N input data points, labelled as well
as unlabelled. Given this training sample, we proceed by
constructing a weighted undirected graph graph consisting of
N vertices, one for each input data point, and a set of edges
connecting adjacent vertices. We define any two nodes i and
j are connected, provide that the Euclidean distance between
their respective data points xi and xj is small enough to
satisfy the condition

‖xi − xj‖ < ε (8)

Let wij denote the weight of an undirected edge connect-
ing nodes i and j. The weights in the graph as a whole
are usually real numbers. Then the N -by-N weight matrix
W = {wij} is a symmetric, nonnegative-definite matrix.
Hereafter, we refer to the undirected graph, characterized
by the weight matrix W, as graph G. Let T denotes an
N -by-N diagonal matrix whose ii-th element is defined by

tii =

N∑
j=1

wij (9)

which is called the degree of node i. Intuitively, the larger
the degree is, the more important the node i is.
We define the Laplacian of graph G as

L = T−W (10)

Assume that there are no self-loops, that is wii = 0 for all
i, then for the ij-th element of the Laplacian L, we have

lij =

⎧⎨
⎩

tii for i = j

−wij for adjacent nodes i and j

0 otherwise
(11)
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Since the Laplacian L is a symmetric matrix, it has real
eigenvalues. We adopt Rayleigh coefficient of a symmetric
matrix to evaluate the variational characteristics of the
eigenvalues of the Laplacian L. To this end, let f denote
an arbitrary vector-valued function of the input vector x,
which assigns a real value to each vertex of the graph G.
The Rayleigh quotient of L is defined as below[12].

λRayleigh =
f
T
Lf

fT f
(12)

The N real-valued eigenvalues is shown by the set

λ0 ≤ λ1 ≤ · · ·λN−1

which is called the eigenspectrum of the Laplacian L, or
graph G.
Define the vector-valued function f in terms of the training

sample X :

f = [F (x1), F (x2), . . . , F (xN )]T (13)

Hence, using Eqs. (11) and (13),

f
T
Lf =

N∑
i=1

N∑
j=1

wij

(
F (xi)− F (xj)

)2 (14)

Then, we define the weight wij as a kernel function:

wij = k(xi,xj) (15)

Here k(xi,xj) is Gaussian kernel function,

k(xi,xj) = exp(−
‖xi − xj‖

2

2σ2
) (16)

where 2σ2 is a tunable parameter which is assumed to be
the same for all the kernels in the spectral graph.
Let ΨI(F ) = f

T
Lf in equation 6, according to gen-

eralized representer theorem, which is proved by [14] ,
optimization of the cost function Ψ(F ) admits the form

F (x) =

N∑
i=1

aik(x,xi) (17)

To compute a = [a1, a2, · · · , aN ]T , we re-write equation (6)
in matrix notations,

Ψ(a) =
1

2
(d−JKa)T (d−JKa)+

1

2
λAa

T
Ka+

1

2
λIa

T
KLKa

(18)
where d is l − by − 1 desired response vector: d =
[d1, d2, . . . , dl]

T , J is N−by−N diagonal matrix, partially
filled with l unity terms: J = diag[1, 1, . . . , 1, 0, 0, . . . , 0].
K is L − by − L Gram matrix: K = {k(xi,xj)}

N
i,j=1. L

is the Laplacian graph matrix. Differentiating this equation
with respect to the vector a, we get

a
� = (JK+ λAI+ λILK)−1

J
T
d (19)

C. Spatial-Temporal Manifold Learning(STML) Framework
In this section, we merge two promising methods–

manifold learning and spatial temporal correlation analysis,
to solve the problem of correlation study of two indirectly
related physical process, such as traffic density and air
quality in urban area.
Obviously, we have to discretize the space and time at

first. Suppose there are N adjacent but not intersect areas
A1, A2, . . . , AN . Each Ai, i ∈ {1, 2, . . . , N}, contains m

blocks B1, B2, . . . , Bm. For every Ai, there are m mea-
surement(sensory data) coming from m blocks respectively,
denoted byXi(t). Define the learning result(output) as scalar
dXi (t). So we have m-dimensional input Xi(t) and one
scalar output dXi (t) at time-step t in area Ai.
Suppose we have only partial knowledge about the input-

output mapping of Xi(t) and dXi (t). To be specific, for area
A1(t) ∼ Al(t), we know the system output dX1 (t) ∼ dXl (t),
for area Al+1(t) ∼ AN (t), we know nothing about the
output. That is standard semi-supervised learning problem,
as we discussed above. Manifold learning method based on
spectral graph theory is proposed to solve this problem.
Moreover, if there are two inter-related process Xi(t) and

Yi(t), i ∈ {1, 2, . . . , N}. If we want to explore the implicit
relationship between them, traditional methods adopt statis-
tical methods such as canonical correlation analysis (CCA).
However, it is hard to justify the meaning or significance
of study results. Here we propose a new paradigm to
perform correlation analysis. Firstly, for each dataset, we
adopt manifold learning methods to reduce the dimension of
data and obtain more ”abstract” information, which we could
be interpreted as the semantic level knowledge. Then the
statistical methods, such as spatial temporal analysis, could
be used for both semantic learning results. This approach is
illustrated by Fig. 3.

Semi-supervised

Manifold Learning(A)

Semi-supervised

Manifold Learning(A)

Spa�al-Temporal Correla�on Analysis(B)

Figure 3. Spatial-Temporal Manifold Learning Framework

In the STML framework, we have two separated input

13



datasets: X(t), Y (t), each with partial prior knowledge
about the output. The algorithm (A) in Fig. 3 is manifold
learning method which performs semi-supervised learning
and results in semantic abstract dX(t) and dY (t). The
algorithm (B) is spatial-temporal correlation algorihm that
generate the correlation matrix Cov(X,Y) with index i

denoting area Ai and τ denoting the delay between two
process X(t) and Y (t + τ). To be specific, we conclude
these two algorithms as follows.

Algorithm 1 Semi-supervised Manifold Learning
Input:

{Xi(t), di(t)}
l
i=1 and {Xi(t)}

N
i=l+1

, which are respec-
tively labeled and unlabeled.
Parameter: spectral graph parameters ε and σ2, ambient
regularization parameter λA and intrinsic regularization
parameter λI .

Output:
{di(t)}

N
i=1 and approximating function F (x).

1: Construct the weighted undirected graph G with N

nodes, using:
Eq. (8) for identifying the adjacent nodes of the graph,
and
Eqs. (15) and (16) for computing the edge weights.

2: Choose kernel function k(x, ·) and using the training
sample, compute the Gram K = {k(xi,xj)}

N
i,j=1

3: Compute the Laplacian matrix L of the graph G, using
Eqs. (9) and (11)

4: Compute the optimum coefficient vector a�, using Eq.
(19).

5: Use Eq. (17) to compute the optimized approximating
function F (X) and then the output {di(t)}Ni=1.

Algorithm 2 Spatial-Temporal Correlation
Input:

Semantic abstraction {dXi (t)}Ni=1 and {dYi (t)}Ni=1, sup-
pose these two stochastic processes are jointly wide
sense stationary.

Output:
Correlation Matrix Cov(X,Y) |i=1,2,...,N

1: For every area Ai, i ∈ 1, 2, . . . , N , neglect the index i,
compute

ρXY (τ) =
E[(X(t)− μX)(Y (t+ τ) − μY )]

σXσY

, (20)

2: Correlation Matrix Cov(X,Y) is a three dimensional
matrix with ρiXY (τ) for each index i.

V. RESULTS EVALUATION
Basically, there are two datasets that we used for anal-

ysis, within the range of 5th ring road of the Beijing

city (E116.209 E116.544N39.76 N40.02). For population
immigration, we use Beijing taxi dataset with involves
totally more than 20,000 taxi trajectories in one month. The
distribution and fluctuation of taxis could reveal people’s
moving pattern. For the environmental change, we used the
dataset from our prototype system, which is a very sparse
sampling result.
Fig.4 shows the density of vehicles in every 4 hours,

where each small cell denotes 1km×1km area. We can see
from Fig.4 that in the city center (inside the 3rd ring road),
the population density is usually higher than that of other
places, with the west regions higher than the east regions in
the center. For temporal analysis, we can see two explicit
peaks in 12am and 8pm, which reflects the most active status
of people.

Figure 4. Traffic Density in Beijing in 24 hours

Fig.5 shows the distribution and fluctuation of carbon
monoxide, which is an important index of air quality. In
Fig.5 we can see an obvious hot zone, which indicates severe
air pollution in that region. We find that there are several
chemical factories in the south of Beijing city, which are
reasonably responsible for the local air pollution.
The correlation between different indexes is of much

value, if we could reveal the implicit relationship among
different phenomena. We uniformly divide the urban area
into 100 sub-area A1, A2, . . . , A100, each area (3km×3km)
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owns 9 blocks.

Figure 5. Carbon monoxide dynamics in Beijing in 24 hours

In Fig.6 we show the learning results at selected area
(Dong Tie Ying Bridge, a 9 km2 region with center E116.43,
N39.856). The blue real line denotes traffic density, while
red dotted line denotes air quality. It is inferred that the
air quality is probably influenced by population density.
Fig. 7 shows the correlation between the two phenomena.
A strong positive peak is monitored at τ = 3.4, with
correlation coefficient 0.74. The correlation peak means
a delayed dependence of air quality to traffic density is
reasonably justified by our methods. For the selected area,
we can predict with confidence the air pollution peak will
occur about three hours later after the rush hour.

VI. CONCLUSION
In this paper, we report our work progress on urban

dynamics study. For crowd sensing in urban area, different
aspects of technical improvements are discussed, such as
compressed sensing and manifold learning, urban channel
test, delay tolerant networking, context-aware framework,
prototype and deployment, et al. The major contribution of
this paper is Spatial-Temporal Manifold Learning(STML)
algorithm, which is a novel framework to study the corre-
lation of different urban physical processes. On one hand,
STML reveals the intrinsic structure of dataset by spectral
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graph theory to achieve dimension reduction, while using
regularization theory to perform noisy small dataset learning.
On the other hand, STML makes it possible for the spatial-
temporal correlation analysis of two urban phenomena rely-
ing not on the raw data, but the learning results (semantic in-
formation). The effectiveness of STML is justified by a case
study of correlation analysis between the traffic density and
the air quality. Also, other interesting applications and non-
trivial results will be emerging to get better understanding
of our cities.
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