
dinam: A Wireless Sensor Network Concept and
Platform for Rapid Development

Dawud Gordon, Michael Beigl and Martin Alexander Neumann

Abstract—dinam is a novel approach to simplified rapid
prototyping of wireless sensor network applications as well as an
according WSN platform. As opposed to the traditional mote-
based development archetype, dinam proposes combining the
development steps into a single continuous, fluid process that is
completely integrated into the node. The dinam concept sensor
node integrates all development tools, source code and other data
into the sensor node system. It is claimed that this concept
will greatly reduce the amount of effort required to develop
wireless sensor network applications by removing the overhead
of installation, iterative development steps and complexity of
the development process. In order to confirm or refute this
claim, a first prototype for educational purposes is developed
and presented which implements the dinam approach. The
development of applications is evaluated in terms of time required
for a specific scenario with a user study. The results presented
here indicate that an integrated instruction and development
period of 10 minutes is sufficient for simple applications using
the dinam approach.

I. INTRODUCTION

Development of wireless sensor network applications has
historically been a time-consuming and effort-intensive task.
Normally, assuming pre-existing hardware, the process in-
volves several components such as sensor nodes, a develop-
ment environment, libraries, drivers, compiler, linker, assem-
bler, debugger, programming setup (e.g. a hardware program-
mer device, cable, programming software, or an over-the-air
programming (OTAP) approach) and design, documentation
and code revision platform. A typical development process
works as follows:

1) Design application
2) Set up development environment
3) Connect hardware
4) Prepare libraries and previous code
5) Write code
6) Compile code and link binaries
7) Write binary to hardware
8) Evaluate effects
9) Repeat from 4
Setting up the development environment and connecting

it to the hardware devices is time consuming, but must be

Manuscript received March 1st, 2010. The authors would like to acknowl-
edge funding by the European Commission for the ICT project CHOSeN
Cooperative Hybrid Objects Sensor Networks (Project number 224327, FP7-
ICT-2007-2) within the 7th Framework Programme.

D. Gordon and M. Beigl are with the TecO Group at the Karlsruhe Institute
of Technology, Karlsruhe (KIT), D-76131 Germany. Email: {dawud.gordon,
michael.beigl}@kit.edu

M. A. Neumann is with the Technische Universität Braunschweig, Braun-
schweig, D-38106 Germany. Email: ma.neumann@tu-bs.de

carried out once at the beginning of the development phase.
The remaining steps contain the body of the development
process and are repeated many times throughout the course
of a project. In most common development platforms, these
steps cannot be parallelized and must therefore be carried out
sequentially: load/prepare previous code, write code, compile,
flash, evaluate.

We refer to the presented method as mote-based design
which is typical for a development process for mote-type nodes
or embedded systems. Development for mote applications
needs to follow a top-down approach in order to avoid costly
development delays, which requires careful design and a high
degree of expertise. Mote-based development provides good
support for experts: different components – e.g. separated
libraries – within the development process allow fine-tuning
the development process and the functionality of the result-
ing program. This disciplined top-down analysis and design
process is beneficial for complex applications.

However, there is a price to pay for such an approach: due
to repeated steps in the development process, development
costs for small and simple applications – which are still typical
in wireless sensor networks – are high in comparison to the
application size. Even worse, the complex interplay of the
various components in the development process often leads to
incompatibility problems between sensor node hardware ver-
sions, libraries, development environment configurations, etc.,
which are beyond the capabilities of non-expert developers:
the number of possible error sources that have to be observed
and the range of development components that have to be
mastered are high. [7] summarizes that for pervasive sensor
network development it is necessary that “simple things must
be simple [to develop]”.

This overhead can be a hindrance in rapid prototyping in
research and education. In research, quick testing of typical
key functionality under variable circumstances is obstructed
by the rigid, top-down software development approach. In
educational settings, students cannot be expected to acquire
experience with all the required components, before starting
the actual task.

We propose to address these problems with an integrated,
interactive, bottom-up development approach: a dinam con-
cept sensor node itself contains the program, development
environment, program interpreter and debugger as well as all
documents in a single device. dinam development thus differs
from mote development, as number of components and steps
of development are considerably reduced.

This paper is structured as follows: we first present related
work followed by the introduction of our concept. We then



present the hardware platform, as this is an integral part of
development simplification in our view. The system is evalu-
ated using a Wizard of Oz user study which supplies initial
results for the impact of the dinam concept on developmental
effort in an educational setting.

II. RELATED WORK

There are numerous examples of mote-type sensor nodes
[1]. Two examples of rather small, simplistic WSN devel-
opment platforms are the uPart Sensor nodes [4] from the
TecO group at Karlsruhe Institute of Technology (KIT) and
the MITes [13] from House n at Massachusetts Institute of
Technology (MIT). Both have a single purpose (gathering
sensory data), are as simplistic as the task allows, and both
attempt to make the development and operation processes as
easy to conduct as possible. Because both systems are intended
to be configured and not to be programmed, application
programming effort is shifted to the program running on a
client, e.g. an end-user PC, and away from the WSN itself.

An example of a simplified application-building tool is the
Arduino development platform for embedded electronics[2].
The Arduino platform is delivered with its own intuitive
development environment which allows developers to create
applications extremely quickly with only a basic knowledge
of the ANSI C programming language. Similar to dinam,
low-level functionality of the hardware architecture is wrapped
using programming primitives in order to increase the ease of
use for first time users and non-experts. But a separate devel-
opment environment as well as distinct offline (development-
time) and online (run-time) phases are not in accordance
with our fully-integrated dinam concept. The mbed

TM
project

from ARM and NXP [10] uses a browser-based development
environment provided via an externally hosted decentralized
server environment. While removing the installation time of
the development environment is a step in the positive direc-
tion, the discrete development process is still an unnecessary
hindrance.

[3] contains a discussion of archetypes for developing WSN
programming languages to increase development efficiency. In
[11] a BASIC interface for WSN development is presented
which simplifies ease of use of the development interface.
Still, discrete program, flash and run steps as well as IDE
installation increase system complexity unnecessarily and open
the door for incompatibilities and misunderstandings. ByVAC
BASIC [12] for the PIC32 micro-controller is another ap-
proach aimed at easing development of embedded systems,
but also requires a client-side development environment.

A previous step towards the dinam mote is the D-Bridge in
[6] which implements a self-contained application in a wireless
sensor network but lacks an integrated development environ-
ment. The platform greatly reduces installation overhead and
was therefore selected as the basis for the further development
of the dinam prototype.

III. CONCEPT

In order to reach the goal that simple applications must be
simple to develop, our system consists of

Fig. 1. A Screenshot of the dinam Prototype Interface

• an integrated development environment.
• a (conceptual) sensor node that contains both the com-

plete development environment and required data (pro-
grams, configurations, past versions).

• a network interface to the sensor node and its integrated
development environment using Web/AJAX technology.

• a minimal sensor network system consisting of a bridge
(for Internet to sensor network coupling) and sensor
nodes that run off-the-shelf after power-on.

Development processes for embedded sensor systems ad-
dressing non-expert users are not completely novel, and
dinam is inspired by the Arduino platform [2]. But our
approach goes one step further: we simplify these components
and integrate the development environment – including the
data – into the wireless sensor system. This means, with
dinam there is no development software required at the
application programmer’s computer to write programs for the
sensor node – not even an editor is required. All code and the
development environment is integrated into the node itself.
Access to the node and the development environment is pro-
vided through a web-server integrated into the WSN system,
thus the only tool a developer requires is a web-browser.
Fig. 1 shows the developer’s view of the IDE running in the
WSN: the web-interface provides simplified access for easy
operation. Because the development environment is integrated
into the sensor system, hardware and software versions of
all development components are always synchronized and
incompatibilities do not occur. Our approach also removes
some of the time consuming steps in the development process,
such as writing the binary to the hardware, as well as reduces
the initial static set-up time and effort overhead.

To simplify development, the dinam concept calls for
integrating the discrete development steps into a single fluid
process. Thus, the offline code generation time and online run-
time must be combined. This will create a single constant
run/development time. During this operational period, the
developer must be able to receive immediate feedback to
his/her actions so that the evaluation step can be pipelined
as well. The resulting dinam system contains an interactive
run-time programming interface which allows the programmer
to change parameters, execute actions and evaluate the results



Fig. 2. dinam concept sensor node

simultaneously.
The command interface is opened by pointing the browser

to the interface webpage located at the IP address which device
acquires via DHCP. Once the page has been loaded, commands
can be inputted directly to the interpreter using the Java-
based web application shown in fig. 1, whereby the interpreter
provides immediate evaluative feedback of previously issued
commands. Our interpreter is inspired by the Commodore
64 BASIC [9] interface and interpreter with modified custom
command words and syntax specifically for the dinam WSN
application. Along with the BASIC command line interface,
it also provides an editor to implement BASIC scripts. The
interpreter associates one dedicated thread of execution with
each individual script. Threads are concurrently executed,
effectively resulting in interleaving execution semantics of
the scripts. This development archetype combines all of the
discrete development steps of mote-based development into a
single continuous, fluid process.

The dinam concept is implemented on the dinam concept
sensor node. The node consists of five components (fig. 2)
to provide the described functionality. The Web-Server acts
as the central access point to node functionality and status
– e.g. status of I/O, configuration data or output produced
by BASIC programs. Within the Web-Server, the Console
offers access to the programming functionality. C64 BASIC
was selected as programming language, as it was designed for
non-expert programmers and also contains enough machine
oriented programming constructs so as to allow interaction
with a node on all levels of operation [8].

Programs are interpreted by the Program Interpreter, which
has access to I/O, the emphFile System, the Internet and
other nodes via the sensor network. The File System serves
as a data store for the Web-Server (e.g. all web-pages) and
programs which are running on the Interpreter. It also contains
the program code, which can be loaded and started using a
run command on the console. The File System stores system
configurations as well as any other auxiliary data. The I/O
component provides access to external sensors as well as
typical I/O (e.g. ADC, DAC, PWM, I2C, SPI). A program
may store the last temperature reading received (I/O) to the file
system and/or send a message when the average temperature
rises above a certain threshold.

Due to high memory and processing resources required by
the dinam concept sensor node, it is difficult to implement

Fig. 3. dinam concept split sensor node with front end

using today’s technology, especially when assuming very long
sensor node lifetime requirements. Alternatively, the node
functionality can be split into a part that is implemented on
a proxy device, e.g. a bridge, and a part that is running on a
simple, ultra-low-power sensor node (see fig. 3). This approach
is achievable using today’s technology, and was prototyped and
evaluated for this paper.

IV. THE PROTOTYPE

The implementation was done using a combination of Akiba
wireless sensor nodes and the D-Bridge dynamic bridge [6]
as can be seen in fig. 4. The Akiba node is based on the
PIC18F14K22 8-bit micro-controller from Microchip, and
was developed at the Technische Universität Braunschweig
specifically for this application. The processor runs at up
to 16 MIPS with 512 B RAM, 256 B EEPROM and 16
kB ROM. Wireless communication occurs at 2.4 GHz over
the ChipCon CC2500 from Texas Instruments with a printed
PCB antenna. The system is on a single-sided PCB measuring
20mm x 18mm with a CR2032 coin cell battery on the back.
Due to low-power technology such as wake-on-radio, standby
receive modes have consumption rates in the low double digit
microwatt range with transmission and reception consumption
rates between 10 and 30 mW. This yields a lifetime of many
months, or even years, on a single coin-cell battery depending
on the how often data is received or transmitted.

The Akiba sensor node is equipped with light, temperature
and vibration sensors as well as connection points for up to
4 analog external sensors and sensor/processor boards. On
top of the RF communication interface, the nodes implement
an over-the-air-configuration protocol that allows for remote
configuration of parameters such as duty cycle length and
sensing rate comparable to those found in uParts [4]. The node
is well adapted to post-hoc computing applications along the
lines of Smart-Its [5] which make them specifically suitable for
the dinam concept. The D-Bridge is a mini embedded web-
server which serves a dynamic web application to Ethernet-
based IPv4 networks. It also has a communication module
which allows it to communicate with the Akiba network, im-
plementing a WSN to Ethernet network bridge. The basic web
application on the D-Bridge has been expanded to implement
the front-end of the dinam concept sensor node.



Fig. 4. D-Bridge and Akiba Wireless Sensor Node

V. EVALUATION

In order to confirm or refute the claim that applications can
be developed in under 10 minutes using the dinam prototype,
a Wizard of Oz-based user study in an educational setting was
designed to generate initial feedback as to the effectiveness of
the concept. Each test subject was instructed on the use of the
BASIC interface for a period of five minutes and then asked
to complete a simple task using the dinam prototype.

The tutorial consisted of a BASIC syntax introduction as
well as information about the interface and usage, including
special functions applying to WSN functionality. Following
the tutorial, each of the subjects was asked to implement an
application which collected 100 temperature values transmitted
by a sensor node and print the average of these values to the
console. Both the sensory input and the console output were
simulated in the study.

The time required by each of the subjects to complete the
task was recorded. In total, five subjects were observed in
the study. All five were students (three computer science, one
computer engineering and one electrical engineering), had no
prior knowledge of the tasks or experience with this, or any
other BASIC dialect. The results ranged from 3:50 mins to
7:11 mins with an average time of 5:20 mins. Although no user
studies were conducted on time required for traditional mote-
based development approaches, in almost all cases the time
required for step two and three (installation of the development
environment and connecting the devices) is greater than the
total development time using the dinam prototype.

During the course of the test, two phenomena were observed
which may indicate some interesting aspects of the dinam
prototype’s development interface. First, test subjects who
used the text editor field to construct programs where able
to accomplish the task significantly faster than those using
the console. This would seem to indicate that a console,
while useful for debugging, is not an efficient way of cre-
ating applications. Second, students with more programming

experience were able to accomplish the task faster than those
with less experience. This is demonstrated by comparing the
average result for computer science students (4:38 mins) to
the average result for non-computer science students (5:33
mins). This would seem to indicate that although the learning
curve has been drastically reduced, it is still dependent on the
programming experience of the subject.

VI. CONCLUSION AND OUTLOOK

In this paper, the dinam concept has been presented. We
showed that this concept is a different, if not orthogonal,
concept to that of mote-based WSN development. The basic
principle behind dinam is the integration of the execution
platform and the development platform into one single concep-
tual device, and the use of the Web to access the development
tools. We showed that this approach enables development
of simple applications in under 10 minutes including an
instruction period. The most complex portion of the dinam
concept node, the basic interpreter, has been implemented on
the D-Bridge, and is the subject of ongoing development and
research. Furthermore, extensive user studies involving other
application building archetypes, more users and real scenarios
are ongoing to evaluate development time and cognitive load
incurred by different approaches.

REFERENCES

[1] Sensor network museum. http://www.snm.ethz.ch/Main/HomePage.
[2] Arduino: an Open-Source Electronics Prototyping Platform.

http://www.arduino.cc/, 2010.
[3] Lan S. Bai, Robert P. Dick, and Peter A. Dinda. Archetype-based

design: Sensor network programming for application experts, not just
programming experts. In IPSN ’09: Proceedings of the 2009 Interna-
tional Conference on Information Processing in Sensor Networks, pages
85–96, Washington, DC, USA, 2009. IEEE Computer Society.

[4] Michael Beigl, Albert Krohn, Till Riedel, Tobias Zimmer, Christian
Decker, and Manabu Isomura. The upart experience: Building a wireless
sensor network. In IPSN ’06: Proceedings of the 5th international
conference on Information processing in sensor networks, pages 366–
373, New York, NY, USA, 2006. ACM.

[5] Hans Gellersen, Gerd Kortuem, Albrecht Schmidt, and Michael Beigl.
Physical prototyping with smart-its. IEEE Pervasive Computing,
3(3):74–82, 2004.

[6] Dawud Gordon and Michael Beigl. D-bridge: A platform for developing
low-cost wsn product solutions. In Proceedings of the Sixth International
Conference on Networked Sensing Systems (INSS09), pages 62–65,
Pittsburgh, Pennsylvania, 2009. IEEE.

[7] Paul Holleis. Integrating Usability Models into Pervasive Application
Development. PhD thesis, LMU, Munich, 2008.

[8] Caitlin Kelleher and Randy Pausch. Lowering the barriers to program-
ming: A taxonomy of programming environments and languages for
novice programmers. ACM Comput. Surv., 37(2):83–137, 2005.

[9] Thomas E. Kurtz. Basic. History of programming languages I, pages
515–537, 1981.

[10] Advanced RISC Machines Ltd. The MBED Rapid Prototyping Platform
for Microcontrollers. www.mbed.org, 2010.

[11] J. Scott Miller, Peter A. Dinda, and Robert P. Dick. Evaluating a
basic approach to sensor network node programming. In SenSys ’09:
Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168, New York, NY, USA, 2009. ACM.

[12] ByVac PIC32-Basic. http://www.pic32.byvac.com/, 2010.
[13] Emmanuel Munguia Tapia, Stephen S. Intille, Louis Lopez, and Kent

Larson. The design of a portable kit of wireless sensors for naturalistic
data collection. In Pervasive Computing, 4th International Conference,
PERVASIVE 2006, volume 3968 of Lecture Notes in Computer Science,
pages 117–134, Dublin, Ireland, May 2006. LNCS.


