
A Platform-as-a-Service for in-situ Development of
Wireless Sensor Network Applications

Yong Ding, Martin Alexander Neumann, Dawud Gordon,
Till Riedel, Takashi Miyaki, Michael Beigl

Karlsruhe Institute of Technology, TECO
Karlsruhe, Germany

Email: [firstname.lastname]@kit.edu

Wenzhu Zhang, Lin Zhang
Tsinghua University

Beijing, China
Email: [zhwz,linzhang]@tsinghua.edu.cn

Abstract—In this paper we present a Platform-as-a-Service
(PaaS) approach for rapid development of wireless sensor net-
work (WSN) applications based on the dinam-mite concept, i.e.
an embedded web-based development environment and run-time
platform for WSN systems integrated in a single information
appliance. The PaaS is hosted by a cloud of dinam-mite nodes
which facilitates the on-demand development, deployment and
integration of WSN applications. We introduce the dinam Cloud
architecture and focus, in this paper, on the PaaS layer estab-
lished by the dinam-mite nodes. In addition to the description of
this so-called dinam PaaS, a performance analysis of the dinam-
mite node towards its applicability to forming a dinam PaaS layer
is demonstrated. We then present the MASON mobile vehicular
network as an example of such a WSN which delivers spatially
and temporally fine-grained environmental measurements within
the city of Beijing, and illustrate how to utilize the dinam PaaS for
integrating the data from the MASON network into its back-end
business system. Finally, we discuss the five essential properties
of the Cloud Computing stack, according to the NIST definition,
with respect to the dinam PaaS and illustrate the benefits of the
dinam PaaS for system integration as well as WSN application
development.

Index Terms—Sensor systems and applications, Wireless sensor
networks, Distributed computing, Distributed information sys-
tems, Quality of service.

I. INTRODUCTION

The concept of Software-as-a-Service (SaaS) allows compa-
nies to purchase subscriptions to software systems which run
at remote locations, rather than purchasing the software and its
hosting infrastructure itself. Furthermore, it allows companies
to leverage from the technological and economical advantages
of cloud computing for their needs in business software. As
with utility computing, cloud computing promotes the delivery
of computing resources (e.g. processing and storage) to clients
remotely, based on a distributed computing and networking
infrastructure [1], [2]. Cloud computing extends this idea by
the delivery of concrete software applications (SaaS) hosted
on an abstract platform established by the distributed fabric.
Furthermore, it is a characteristic of the service delivery
architecture defined in cloud computing that there are no
relevant concerns on the concrete nature and locations of the
infrastructure (i.e., the systems and networks that comprise
it). This is enabled by the infrastructure (which the service

delivery architecture is built on) which is required to provide
constant and location-independent quality of service (QoS),
constant reliability and on-demand scalability in terms of
processing, storage and networking resources.

Instead of offering bare computing resources or concrete
software applications, the concept of Platform-as-a-Service
(PaaS) describes to sell application hosting as a service.
Analogous to SaaS, in which customers purchase usage rights
to software services, PaaS allows clients to purchase services
for deployment of consumer-created or acquired applications.
Deployed applications immediately benefit from the techno-
logical guarantees established by the entire infrastructure:
QoS, reliability and scalability. PaaS implementations are often
web browser-based and provide comprehensive application
development, deployment, monitoring and configuration ca-
pabilities [3], [4].

This work proposes to facilitate the concept of an integrated
embedded development and run-time appliance (called the
dinam-mite [5]) to establish an embedded PaaS approach
(called the dinam PaaS). The approach provides in-situ devel-
opment, deployment, monitoring and configuration of WSN
applications, and transfers the technological benefits of the
service delivery architecture of cloud computing to WSNs by
designing an analogous architecture that provides analogous
guarantees to hosted WSN applications, called the dinam
Cloud. We demonstrate the benefit of our approach by an
exemplary case study to integrate a sensing system into a
business system.

Sensing systems in this context primarily refer to wireless
sensor networks (WSNs) and business systems refer to service-
based systems at enterprise scale, especially Service-Oriented
Architecture (SOA) [6]-based, i.e. web services-based, sys-
tems, as for example Enterprise Resource Planning (ERP) or
Supply Chain Management (SCM) systems. As these kinds of
business systems are more and more dependent on contextual
information on their planned resources and the entities in their
supply chains for optimized execution of business processes,
the integration of systems to capture these contexts, i.e. sensing
systems, has become important [7], [8].

The guarantees provided by the dinam Cloud fundamentally
simplify development and seamless integration of sensing sys-978-1-4673-1786-3/12/$31.00 c©2012 IEEE

tems into today’s business systems. To enhance business sys-
tems by contextual information gathered from sensing systems
easily and reliably, the architecture provides QoS, reliability,
and it provides an abstract platform on a heterogeneous and
distributed WSN fabric to enable on-demand scalability of
resources. In this paper, we focus on the architecture of the
dinam Cloud as a key enabler to easy and seamless integration
of sensing systems into business systems. We do not discuss
communication architectures, as for example publish-subscribe
for the SensorCloud as introduced in [7].

Our concept is not the first PaaS-style approach for the de-
velopment and deployment of embedded software. The MBED
project from ARM [9] provides a cloud-based and PaaS-like
approach for their micro controller-based rapid prototyping
platform. The primary difference between our approach and
MBED is that the dinam PaaS is built on a cloud architecture
that provides an abstract platform and guarantees to hosted
applications. Furthermore, in contrast to MBED, the dinam
PaaS concept is built on a set of stand-alone information
appliances that do not require a central infrastructure. To
the authors’ knowledge, the concept of an embedded PaaS
which provides guarantees to applications which are vital for
business integration, and which does not depend on a central
infrastructure, is being discussed here for the first time.

This paper will begin by introducing the dinam PaaS
concept, and our implementation of it, in the context of the
dinam Cloud architecture. Afterwards, our PaaS approach will
be evaluated: (1) in terms of our implementation’s processing
scalability, (2) in terms the concept’s applicability to a use
case, (3) and by a discussion on its general applicability to
integration into back-end business applications. In the context
of the use case evaluation, a real-world application based on
a city-wide sensing system in Beijing, as well as a business
application to reduce the cost of energy, will be introduced.
We will hypothetically evaluate to integrate the data from the
city-wide sensing system into the business application. Finally,
we conclude by summarizing our discussion.

II. DINAM CLOUD ARCHITECTURE

The most notable of cloud computing definitions is that
published by the U.S. National Institute of Standards and
Technology (NIST) [3], whose so-called technical cloud stack
consists of three layers, i.e. Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS), see Figure 1.

According to these service delivery layers of cloud com-
puting, we present in the following the proposed dinam Cloud
stack. Figure 1 schematically depicts the Cloud Computing
stack as well as the dinam Cloud stack:

Dinam IaaS: The infrastructure services delivery layer of
the proposed dinam Cloud architecture provides fundamental
computing resources (e.g. processing, storage, networking,
etc.) in the context of WSNs, i.e. using sensor nodes. Con-
ceptually, these infrastructure services could be marketed as a
fully outsourced service for consumer’s own WSN application

Fig. 1. The dinam Cloud Architecture

needs. Our reference implementation of this layer is based on
the uPart low-power wireless sensor nodes [10].

Dinam PaaS: The platform services delivery layer of the
proposed dinam Cloud architecture provides computing plat-
form services for the rapid development, deployment, mon-
itoring and configuration of WSN applications. Furthermore,
the dinam PaaS facilitates an abstract platform to WSN appli-
cations in the dinam SaaS layer. The layer presents a unified
layer of networking, storage, database and service interfaces
to applications, as shown in Figure 2. And applications are
essentially enabled to run on top of a potentially heterogeneous
infrastructure, i.e. to run on the dinam IaaS layer which is
formed by potentially heterogeneous wireless sensor nodes.

Fig. 2. The dinam PaaS Layer

The dinam PaaS layer hides the actual underlying WSN
hardware and software and its inherent complexity from run-
ning applications and customers. Customers are protected from
buying and managing these complex ecosystems physically,
and hosted applications benefit from prominent Cloud technol-
ogy features, such as the easy migration of hosted applications
between systems in the infrastructure. All of which, in general,
results in synergetic effects to reduce cost of customers [11].
Our reference implementation of this layer is based on the

dinam-mite embedded information appliance (and wireless
sensor node) [5].

Dinam SaaS: The software services delivery layer of the
proposed dinam Cloud architecture is composed of the WSN
applications hosted on the dinam PaaS layer, i.e. the concrete
service implementations for integration of concrete wireless
sensing systems into concrete business systems form the dinam
SaaS layer. In our application study in section III, we provide
an example application for integrating an environmental mon-
itoring system into an energy consumption prediction business
system.

Conceptually, applications are enabled to offer (arbitrary
WSN-related) services which are accessible from various
client devices based on a broad network accessibility. But
the dinam SaaS layer is dependent on the service access
provided by the PaaS layer. Our reference implementation is
based on a run-time library on the dinam-mite node which
provides the ability to register web service end-points to hosted
applications. These services can be consumed by clients using
standardized REST web services technology.

A. Dinam PaaS Implementation

Our reference implementation of our novel PaaS concept
primarily provides a programming and run-time environment
for rapid development and deployment of services between
complex sensing systems and complex business systems. The
programming environment provides access to a web-based
IDE (shown in Figure 3) that developers can use to imple-
ment services which integrate sensing systems into business
systems. The services are based on a service API which is
available to the programming and run-time environment.

Fig. 3. Dinam-mite Web-Based IDE

The implementation is based on the dinam-mite HW and
SW platform (shown in Figure 4) which is an embedded

system for rapid sensing system applications development,
whereby our reference implementation provides the introduced
service capabilities of the Dinam PaaS layer.

The hardware platform (shown in Figure 4(a)) provides
physical networking interfaces to communicate with WSNs
and IP-based Ethernet or Wi-Fi networks.

The software architecture of the dinam-mite platform rele-
vant for communications between sensor nodes and business
systems is depicted in Figure 4(b). On its bottom, the system
provides access to WSNs and IP-based networks. Both of
which may become rather complex, for example in case
of the presented Urban WSN in Beijing (as illustrated in
our application case study in section III), or ERP enterprise
systems in general.

(a) HW Platform

WSN TCP/IP

REST/JSON

Service Scripts

HTTP

Raw Bridge

Run Time Library

(b) SW Platform

Fig. 4. Dinam PaaS Reference Implementation: The dinam-mite HW and
SW Platform

Our technology resides on top of both communication stacks
to implement services for integration of WSNs and business
systems. These services are primarily founded on a dedicated
bridging layer which natively provides simple bridging ser-
vices, and on a BASIC [12] interpreter which provides simple
and complex bridging services using user-defined programs
in BASIC. The interpreter is equipped with an according
run-time library that provides an API (also called bridging
stubs) for access to both network ends which represents our
programming framework for services connecting both network
ends with each other. Simple bridging refers to bridging of raw
incoming data (e.g. raw sensor values) and complex bridging
to bridging of incoming data after they have been processed,
e.g. filtered and/or recombined. BASIC scripts running on the
interpreter implement services that perform either simple or
complex bridging.

In general, the bridging of the dedicated layer and the stubs
is in a push fashion, meaning that any packets coming in
from either network end can be pushed into the other network
end, i.e. based on REST [13] over TCP or UDP in IP-based
networks. But in case of IP-based networks, also a pull fashion
has been implemented which provides the ability to pull data
which have come in a dinam-mite node via REST to remote
IP-nodes. The dedicated bridging layer is only able to push any
raw incoming data from sensor nodes into IP-based business
systems and vice versa. The bridging stubs provide pull and

push functionality to both network ends – BASIC programs
may either push incoming data into the other network end or
store them locally until an IP-node pulls them. Developers may
use the web-based IDE to implement services (based on either
simple or complex bridging) in BASIC using our provided
bridging framework to integrate WSNs and business systems.

B. Performance Evaluation of Dinam PaaS Implementation

Before we evaluate the dinam PaaS in the context of a use
case in section III, we will analyze the performance of our
dinam PaaS implementation (which is based on the dinam-mite
node). This analysis primarily determines recommendations on
how to configure the BASIC run-time environment to preserve
an adequate overall performance of the dinam-mite when
multiple BASIC programs are executed concurrently. The
configuration recommendations are affected by the application
scenario the dinam-mite node is used in, i.e. recommendations
are deduced from the number of programs concurrently run on
the dinam-mite and the processing power each one requires.
The processing power is defined by the budget which the
scheduler allocates to each script.1

This performance analysis’ primary goal is to quantitatively
answer the question how the round robin-based scheduler’s
budget configuration and the number of concurrently executed
BASIC programs affects the dinam-mite’s overall perfor-
mance, in the current interpreter implementation. Therefore,
the assessed variables in this benchmark are (1) the budget that
the scheduler accounts to each script and (2) the number of
concurrently running BASIC programs. (Note: The configured
budget directly affects the execution performance of a BASIC
program on the dinam-mite node, as it defines how many
operations a script is allowed to perform in one iteration of
the scheduler.)

On the one hand, this analysis will demonstrate the appli-
cability of our reference implementation to the dinam PaaS
concept from a processing scalability perspective. And on the
other hand and more importantly, the following results have
established the ground, in terms of background knowledge,
for monitoring and run-time governance components on the
dinam-mite node, i.e. our reference implementation of the
dinam PaaS concept. The combination of both components
allows a dinam-mite node to provide essential Cloud Com-
puting characteristics as discussed in the following section V.
In particular, the ability to monitor and react dynamically to
processing resources demands of hosted services is provided.

The overall performance of the dinam-mite can for example
be measured by downloading a file from the microSD card
via the web server. This seems to be a deliberate choice, as
downloads involve data processing in the web server and I/O
operations in the file system driver, all of which runs concur-
rently to the interpretation of BASIC programs. Therefore, a
file download is used as overall performance indicator in this
analysis.

1In the current implementation of the scheduler (round robin), all script
have equivalent budgets.

Additionally, the analysis tries to qualitatively interpret the
results of the performance assessment. It is expected that the
benchmark reveals a trade-off between budget configuration
(script performance) and the number of concurrently running
BASIC programs, with respect to the overall performance of
the dinam-mite node. Figuratively speaking, a “sliding bar
controller” will hopefully become evident. The slider’s two
extremes are: (1) high budget (script processing power) and a
low number of scripts and (2) low budget (script processing
power) and a high number of scripts. Meaning that, given
a required overall performance of the dinam-mite node, the
slider tells how many scripts a given budget may serve
while preserving the required overall performance level of
the dinam-mite node, or how the budget should be configured
to preserve the overall required performance level, when the
number of scripts is given. This information in consequence
could for example be employed to give recommendations on
how to configure the budget when a set of BASIC programs
to be run on a dinam-mite node is given.

1 temp = Time()
2 GOTO 1

Listing 1. BASIC Code for Benchmark Sripts

The BASIC script listed in Listing 1 is used as the bench-
mark program in this analysis. The script performs an endless
loop, whereby each loop iteration uses the run-time library
to fetch the dinam-mite node’s current local time. This script
models commonly expected behavior of BASIC programs on
a dinam-mite node. Common BASIC scripts are expected
to have infinite behavior which is dominated by conditional
tests, arithmetic calculations, (fast) run-time library requests
and a few I/O operations (i.e. relatively slow run-time library
requests), for example in case logs are written to permanent
storage or remote UDP/TCP connections are initiated.

Fig. 5. Testbed for Performance Evaluation

The testbed for this section is illustrated in Figure 5. In
essence, the work station issues a file download request to a
dinam-mite node using the GNU wget [14] command line tool
which outputs average download speeds. The command used
for benchmarking is depicted in Listing 2.

$ wget --delete-after -v
http://169.254.1.1/test.dat

Listing 2. Console Command on Workstation for Benchmarking

The test routine was divided into 6 iterations. In each of
the iteration, the dinam-mite node’s software stack has been
compiled using a different static budget in the (round robin)

scheduler, ranging from 100 to 105. Additionally, 6 perfor-
mance tests have been executed, whereby each performance
test had a different number of concurrently running BASIC
program instances of the program listed in Listing 1 in place,
i.e. from 0 to 5 instances. After setting up the proper number
of scripts in one performance test, a file of 5 MiB in size has
been downloaded from the dinam-mite node using the wget
command on the work station. The test results are depicted in
Table I in numbers.

TABLE I
PERFORMANCE RESULTS

PPPPPPBudget
#2

0 1 2 3 4 5

100 157 157 156 156 155 155
101 157 154 151 1573 1563 1543

102 157 147 133 122 113 104
103 157 77 50.3 37.5 29.9 24.6
104 157 13.4 7 4.73 3.58 2.87
105 157 1.44 0.743 0.496 0.363 0.295

There are two remarkable aspects regarding the information
in the table. On the one hand, there is an unexpected sudden
increase in file download performance for the 101 budget with
3 concurrent BASIC scripts. At the moment it is not clear
to us what causes this behavior. One plausible explanation
might be that inter-communication timings of TCP/IP/Ethernet
between the work station, the Ethernet switch and the dinam-
mite node are “nicely” matched/served in this setting. On the
other hand, the figure shows which budgets are impractical
for properly most application scenarios. The lowest possible
budget of 100 imposes a low run-time performance for the
BASIC program on the dinam-mite node which is probably
too slow for most transformational systems and also reactive
systems. We expect budgets equal to or lower than 101 to
be hardly used in practical scenarios. Also, budgets equal to
or higher than 105 are probably impractical, as the overall
performance tremendously drops, even if only a single BASIC
program is run. In addition, e.g. with a budget of 105, the
tests showed that the interpreter’s scheduler becomes very
“uncooperative in multitasking”. With a budget of 104 or 105

the scheduler spends long periods of time in script execution
which blocks the cooperative multitasking scheduler of the
dinam-mite node’s core software stack for long periods.

The information in the previous table are also plotted in
Figure 6, whereby the overall performance is illustrated on
the y-axis and the number of scripts on the x-axis. All values
that belong to a specific row in Table I are highlighted using
a distinct color. Besides the bare marks, the rows of the table
(equi-colored marks) have been fitted into linear, exponential
or polynomial functions, as depicted too in Figure 6. Each
function serves to approximate the overall performance decay
when adding more and more concurrent BASIC program
instances to the interpreter which schedules the scripts using
a fixed budget.

2Number of concurrent programs
3This value has been double-checked.

0 1 2 3 4 5

0

50

100

150

of Programs

K
iB

/s

Budget: 100 Budget: 101

Budget: 102 Budget: 103

Budget: 104 Budget: 105

Fig. 6. Function-Fitted Plots of Performance Test Data

The figure illustrates that a budget of 102 seems to offer
an adequate trade-off between BASIC program performance
(budget) and the number of scripts that can concurrently be
run, whereby the overall system performance is kept above
100 KiB/s in all tests for the 102 budget. For this reason, the
interpreter’s scheduler by default is set to a budget of 102

which probably serves a wide range of potential applications
running on the dinam-mite node in BASIC. But the budgets
of 101 and 103 might also be interesting. The run-time
performance for BASIC scripts offered by the 103 budget is 10
times higher than with 102 and the overall system performance
for one running BASIC script is still moderate (77 KiB/s). This
might be very interesting if only one BASIC script is hosted
on the dinam-mite which requires higher processing power
than the 102 budget could possibly offer. Analog deliberations
hold for the 101 budget which might be very interesting if
only processing resource-friendly scripts are hosted and the
application scenario requires other modules on the dinam-mite
node to be fast and highly responsive.

III. APPLICATION EXAMPLE FOR DINAM PAAS

In this section a real WSN application will be introduced,
followed by a business process which could be improved
by integrating the sensed data from the WSN. First, a real
WSN implementation for city-wide environmental sensing,
called MASON (Metropolitan Area Sensing and Operating
Networks) [15], [16], will be introduced, which collects
fine-grained environmental data within the city of Beijing.
Afterwards, a business process within an enterprise system
of power production companies in and around Beijing is
illustrated, whereby focus is put on their prediction process
for future energy consumption in Beijing. In the next section

an application example for the dinam PaaS is presented to
demonstrate the potential of the PaaS for rapid development
of WSN applications.

A. The MASON Urban Sensing Platform

MASON is a mobile vehicular network created by Tsinghua
University which provides sensing coverage for urban areas.
The network has been deployed within the city of Beijing,
and constantly samples environmental parameters and location
information using nodes attached to taxis which travel through
the city. Each sensor node is equipped with the following
sensors: GPS, temperature, humidity, carbon-monoxide, and 3-
axis accelerometer. Figure 7 displays GPS locations of sensor
measurements generated by the MASON prototype over the
course of one day.

Fig. 7. GPS Traces Generated by the MASON Prototype in Beijing

The nodes use IP-based routing, and can be accessed
directly when they are in range of a base station. When out
of range of a base station, a MASON node stores the sampled
data locally. When a connection has been established, a node
uploads its data to a central system (through the just connected
base station).

B. Business Process

In general, an energy utility process [17] of an energy utility
company consists of a specifically ordered set of activities
across time and location. The activities have clearly defined
inputs and outputs, and they are performed by various com-
puting systems inside of a complex enterprise system. Each
system provides specialized applications according to its role
in the business process.

The prediction of the energy demand for customers is an
essential part of such energy utility processes. But currently,
the majority of prediction implementation is purely based
on long-term statistics which does not take the dynamically
changing real-time power consumption into account. But it
has been shown that various environmental factors, such as
location, temperature and humidity have significant impact on
the accuracy of power demand prediction. Furthermore, the
analysis of urban-scale information on improvement of the
energy consumption performance [18], [19] and the develop-
ment of Business Intelligences [20] both proved that different
aspects of urban information can be an effective support to
derive a more accurate prediction of urban energy consumption
[21].

Estimating these factors in real time enables spatially
fine-grained energy consumption prediction. In consequence,
spatially fine-grained and short-term (intra-day) control of
power consumption is fostered, which is an interest of both,
energy suppliers and energy consumers. The intra-day control
translates directly into reduced the monetary loss, e.g. for a big
industry (consumer) that could be 500e every 15 min [22].

IV. SYSTEM INTEGRATION EXAMPLE USING THE DINAM
PAAS IMPLEMENTATION

In this section, the usefulness of the dinam PaaS for rapid
development of WSN applications will be demonstrated by
an example based on the energy prediction services envisaged
in the previous section. We will integrate a wireless sensing
system into an energy utility (business) process by a simple
application on our dinam PaaS reference implementation.

Fig. 8. Integration Architecture of Energy Business Process

At its top layer, Figure 8 shows the schematic structure of
an urban-scale energy ecosystem, consisting of energy produc-
ers, consumers, transporters and supporting IT infrastructure.
Using a dinam PaaS implementation on the middle layer, a
power demand forecasting service is provided and enabled for
business integration. The services encapsulate existing fore-
casting mechanisms that provide short-term energy consump-
tion prediction using monitoring of environmental factors.
The environmental monitoring functionality is provided by the
MASON network whose seamless integration into the service
system is enabled by the Cloud characteristics (discussed in
section V) of the dinam PaaS.

Based on the WSN application description in the previous
section, we assume that the PaaS devices are placed at strategic
locations throughout the city, and that passing vehicles upload
sampled data to nearby devices when in range. We also assume
that a fine-granular real-time temperature map of different
areas of the map would increase the prediction accuracies of

the energy consumption by allowing them to better estimate
how many inhabitants will use AC or heating devices.

The example in Listing 3 shows a BASIC script which
calculates the average temperature in 10 second intervals for
the immediate area around the dinam PaaS base station. The
computing platform gathers local temperature readings from
local taxis in its proximity. Every 10 seconds the average is
the calculated and uploaded to a energy producer’s database
using a REST API.

1 NumMeas = 0
2 TempSum = 0
3 StartTime = Time()
4 IF NewPacket() THEN GOTO 5 ELSE GOTO 4
5 TempSum = TempSum + GetTemp()
6 NumMeas = NumMeas + 1
7 Period = Time() - StartTime
8 IF Period>=10 THEN GOTO 9 ELSE GOTO 4
9 HTTPput("http://domain.cn/CouchDB/",

"Average Temp for Region 17",
TempSum / NumMeas)

10 GOTO 1

Listing 3. BASIC Code for Temperature Application

In the example, lines No. 1 through 3 initialize variables for
holding the number of measurements received, the sum of all
measurements and the timestamp for the start of the measure-
ment period. Every time a new measurement packet arrives,
lines 4 through 6 extract the temperature from that packet,
add it to the sum of all of the temperature measurements and
increase the count of received measurements by one. Lines 6
through 8 check to see if 10 seconds have passed, at which
point the average temperature for that region over that period
of time is then uploaded to a database. Line 10 then returns
to the first line, resetting the program.

This simple example demonstrates the effectiveness of the
dinam-mite as a PaaS for the rapid development of WSN
applications. In this case, the energy producer would be able to
create a computing platform which calculates a regionally and
temporally fine-grained average temperature and place it on
their servers. There it can now be integrated into their power
consumption prediction processes to improve the efficiency of
their systems, thereby lowering their costs.

As demonstrated previously by Gordon et al. [5], application
construction requires little or no understanding of the technical
details of the underlying system and can be created in 5
minutes or less. The applications are generated by accessing
the IDE served by the PaaS with nothing more than a web
browser, minimal abstract understanding of the underlying
application and an introduction lasting only a few minutes [5].
The resulting applications can combine WSN communication,
network bridging and data processing operations to integrate
valuable data generated by WSN applications into business
processes which can make use of that data.

V. DISCUSSION

In WSN applications, each sensor node is wireless and
usually has to operate for long periods of time, it has therefore
inherently strict energy resource constraints. To guarantee low
power needs, sensor nodes have then a limited processing
power, storage capacity and communication bandwidth. As the
consequence of offsetting these limitations, the deployment
of sensor nodes has to be highly dense and has to have a
high degree of interaction among them [23]. Furthermore, as
Akyildiz et al. [24] point out: the cost of WSN deployment and
maintenance must be low. That’s why we introduced the dinam
Cloud as a new type of service to enable rapid development
of WSN applications with minimum cost.

Similar to the NIST definition of Cloud Computing [3], an
instance of the proposed dinam Cloud could also be rapidly
provisioned and released with minimal management effort.
Therefore, the dinam Cloud stack explicitly addresses the
five essential characteristics [3] of cloud computing in the
following ways:

• On-demand self-service. A consumer can provision com-
puting capabilities by deploying additional instances of
the dinam-mite node. The processing power of each
script can be configured in a node’s web interface.
The overall provisioning of resources runs automatically
and in a context-aware manner, without requiring any
interaction with the dinam-mite service provider. This
process is aware of the context (e.g. geographic location)
of a dinam-mite node to accommodate for contextual
constraints of hosted application, which, for example,
may only be executed in a certain geographic area.

• Broad network access. As described in Sec. II-A, the
dinam-mite platform provides networking interfaces to
communicate with WSNs and IP-based networks. Using
IP-based networks, the applications forming a set of ser-
vices hosted on the dinam PaaS are accessible via REST
[13] over TCP or UDP. Based on this, the services hosted
on the dinam PaaS are accessible from various client
devices, for example using a web browser. Furthermore,
applications on dinam-mite nodes are able to establish
connections (reliable and unreliable) to both networking
domains, i.e. WSN and IP-based networks. For example,
applications may establish a connection to an external
REST interface to transmit data into a database.

• Resource pooling. In principle, multiple consumers can
upload arbitrarily many BASIC scripts to the same dinam-
mite node. As immediate consequence, all BASIC scripts
will be run concurrently on one dinam-mite node. In case
that the main memory of a node is exhausted, the BASIC
scripts will be reassigned to another node.

• Rapid elasticity. In one network, consumers can deploy
arbitrarily many dinam-mites to form an entire computing
platform. As mentioned above, the BASIC scripts can be
automatically reassigned to other dinam-mites.

• Measured service. A monitor creates profiles of running
applications on a dinam-mite node. The profiles track how

scripts behave with respect to processing and input/out-
put. If scripts do not perform adequately from a process-
ing or IO perspective (as requested by a customer), the
allocated service qualities for processing and IO can be
adapted using a node’s web interface.

VI. CONCLUSION

In this paper, the concept of an embedded Platform-as-
a-Service for in-situ development of WSN applications was
introduced. The approach is based on the dinam-mite concept
which propagates the use of integrating development and run-
time environment into a single information appliance to rapidly
develop embedded software. The system’s implementation is
based on the dinam-mite node, which is a wireless sensor node
with an embedded development environment which is served
by an embedded web server. The IDE provides users with the
ability to combine data, processing and networking commands
to programs using a version of BASIC which has been adapted
for these purposes.

Besides conducting a performance evaluation of the dinam
PaaS with respect to its scalability, a real world scenario for
WSN system integration using the dinam PaaS was introduced.
Using instrumented taxis, gathered wireless sensor data are
integrated into the business processes of energy suppliers.
Based on related research, it was illustrated that energy
consumption forecasting processes within these companies
can incorporate this data to improve forecasting, especially
short-term prediction. Afterwards, the dinam-mite concept and
node were hypothetically evaluated as a PaaS for application
development within the example application. In this context,
a simple computing platform program was developed which
provides temperature averages to the forecasting process on a
highly frequent base, every 10 seconds. The results indicate
that the dinam PaaS is a promising tool for integrating WSNs
into business processes, allowing users to develop applications
rapidly through the provided platform services.

ACKNOWLEDGMENT

The research reported in this paper has been partially
supported by the Robert Bosch Stiftung for the initiation
funding of a cooperative research project “Urban Sensing of
City Dynamics and Energy Use in the Beijing Metropolitan
Area” (32.5.8003.0102.0). In addition, the authors would like
to acknowledge the funding by the European Commission
under the ICT project “TIMBUS” (Project No. 269940, FP7-
ICT-2009-6) within the 7th Framework Programme.

REFERENCES

[1] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles,” IEEE Internet Computing, vol. 9, no. 1, pp.
75–81, Jan. 2005. [Online]. Available: http://dx.doi.org/10.1109/MIC.
2005.21

[2] A. Dubey and D. Wagle, “Delivering software as a service,” McKinseyQ,
vol. Web exclusive, no. May, 2007.

[3] P. Mell and T. Grance, “Nist definition of cloud computing,” National
Institute of Standards and Technology, Tech. Rep., October 7 2009.

[4] G. Lawton, “Developing software online with platform-as-a-service
technology,” Computer, vol. 41, no. 6, pp. 13 –15, june 2008.

[5] D. Gordon, M. Beigl, and M. A. Neumann, “dinam: A wireless sensor
network concept and platform for rapid development,” in Proceedings
of the Seventh Internation Conference on Networked Sensing Systems.
Kassel, Germany: IEEE, 2010, pp. 57 – 60.

[6] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[7] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of
sensor-cloud integration opportunities and challenges,” in Proceedings
of the 3rd International Conference on Ubiquitous Information
Management and Communication, ser. ICUIMC ’09. New York,
NY, USA: ACM, 2009, pp. 618–626. [Online]. Available: http:
//doi.acm.org/10.1145/1516241.1516350

[8] C. Decker, P. Spiess, L. M. S. D. Souza, and M. Beigl, “Coupling
enterprise systems with wireless sensor nodes: Analysis, implementa-
tion, experiences and guidelines,” in In Pervasive Technology Applied
@ PERVASIVE, 2006.

[9] A. R. M. Ltd., “The MBED Rapid Prototyping Platform for Microcon-
trollers,” www.mbed.org, 2010.

[10] M. Beigl, C. Decker, A. Krohn, T. Riedel, and T. Zimmer, “uparts: Low
cost sensor networks at scale,” Demo at Ubicomp 2005, Tokyo, Japan,
Sept. 11-14 2005.

[11] P. Mathur and N. Nishchal, “Cloud computing: New challenge to the
entire computer industry,” in Parallel Distributed and Grid Computing
(PDGC), 2010 1st International Conference on, oct. 2010, pp. 223 –228.

[12] T. E. Kurtz, “Basic,” History of programming languages I, pp. 515–537,
1981.

[13] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, 2000, aAI9980887.

[14] H. Niksic et al., “Gnu wget 1.13.4,” The non-interactive download
utility, Tech. Rep., 2011. [Online]. Available: http://www.gnu.org/
software/wget/manual/wget.pdf

[15] X. Yu, H. Zhao, L. Zhang, S. Wu, B. Krish-namachari, and V. O. Li,
“Cooperative sensing and compression in vehicular sensor networks for
urban monitoring,” in Proceedings of IEEE International Communica-
tions Conference (ICC’10). IEEE, 2010.

[16] L. Zhang, W. Zhang, X. Mao, J. Jiao, S. Zheng, L. Li, Y. Liu,
T. Wang, and M. Gu, “Nomad - networked-observation and mobile-
agent-based scene abstraction and determination,” in Proceedings of
the 8th ACM Conference on Embedded Networked Sensor Systems
(SenSys’10). ACM Press, 2010.

[17] S. Neumann, K. Shankar, and A. Vojdani, Applying Workflow Technolo-
gies to Integrate Utility Business Processes, Utility Integration Solutions,
Inc., 2005.

[18] C. Ratti, N. Baker, and K. Steemers, “Energy consumption and urban
texture,” Energy and Buildings, vol. 37, no. 7, pp. 762 – 776, 2005.

[19] W. Fong, H. Matsumoto, Y. Lun, and R. Kimura, “System dynamic
model for the prediction of urban energy consumption trends,” in
Proceeding I of the 6th international conference on indoor air quality,
ventilation & energy conservation in buildings (IAQVEC 2007), Sendai:
Tohoku University, 2007, pp. 762–769.

[20] M. Golfarelli, S. Rizzi, and I. Cella, “Beyond data warehousing: what’s
next in business intelligence?” in Proceedings of the 7th ACM inter-
national workshop on Data warehousing and OLAP, ser. DOLAP ’04.
New York, NY, USA: ACM, 2004, pp. 1–6.

[21] Y. Ding, W. Zhang, T. Miyaki, T. Riedel, L. Zhang, and M. Beigl,
“Smart beijing: Correlation of urban electrical energy consumption
with urban environmental sensing for optimizing distribution planning,”
in Work in Progress (Energy 2011), 1st International Conference on
Smart Grids, Green Communications and IT Energy-aware Technolo-
gies. Venice/Mestre, Italy: Think Mind, May 22-27 2011, pp. 98 –
101, iARIA Conference.

[22] Y. Ding, H. R. Schmidtke, and M. Beigl, “Beyond context-
awareness: context prediction in an industrial application,” in
Proceedings of the 12th ACM international conference adjunct
papers on Ubiquitous computing, ser. Ubicomp ’10. New York,
NY, USA: ACM, 2010, pp. 401–402. [Online]. Available: http:
//doi.acm.org/10.1145/1864431.1864457

[23] D. Culler, D. Estrin, and M. Srivastava, “Guest editors’ introduction:
Overview of sensor networks,” Computer, vol. 37, no. 8, pp. 41 – 49,
aug. 2004.

[24] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” Communications Magazine, IEEE, vol. 40, no. 8,
pp. 102 – 114, aug 2002.

