ActiServ: Activity Recognition Service for Mobile Phones

Martin Berchtold
Institute of Operating Systems and
Computer Networks (IBR)

TU Braunschweig

Abstract

Smart phones have become a powerful platform for
wearable context recognition. We present a service-based
recognition architecture which creates an evolving classifi-
cation system using feedback from the user community. The
approach utilizes classifiers based on fuzzy inference sys-
tems which use live annotation to personalize the classifier
instance on the device. Our recognition system is designed
for everyday use: it allows flexible placement of the device
(no assumed or fixed position), requires only minimal per-
sonalization effort from the user (1-3 minutes per activity)
and is capable of detecting a high number of activities. The
components of the service are shown in an evaluation sce-
nario, in which recognition rates up to 97% can be achieved
for ten activity classes.

1. Introduction

Although smart phone devices are powerful tools, they
are still passive communication enablers rather than active
assistance devices from the user’s point of view. The next
step is to introduce intelligence into these platforms to allow
them to proactively assist users in their everyday activities.
One method of accomplishing this is by integrating situa-
tional awareness and context recognition into these devices.
Smart phones represent an attractive platform for activity
recognition, providing built-in sensors and powerful pro-
cessing units. They are capable of detecting complex ev-
eryday activities of the user (i.e. standing, waking, biking)
or the device (i.e. calling), and they are able to exchange
information with other devices and systems using a large
variety of data communication channels.

Several approaches to smart phone based recognition
(e.g. [13, 6, 8, 12]) have been published which demonstrate
the importance of research in this field. The architecture
presented here builds on this research, but has several ad-
vantages over previous approaches, thus enabling context
awareness under realistic conditions. Orientation Robust-

Matthias Budde, Dawud Gordon, Hedda Schmidtke

and Michael Beigl

Institute of Telematics, Pervasive Computing Chair, TecO
Karlsruhe Institute of Technology (KIT)

ness: one problem in mobile context recognition is that the
way in which the device is carried greatly affects the abil-
ity of conventional classifiers to recognize activities. The
classifier structure presented here is robust to this through
a novel training structure. Class Diversity: The ActiServ
approach provides a platform for classification of many dif-
ferent activities (here 10 classes). Usability: The Acti-
Serv system does not require the user to have prior knowl-
edge or abilities in order to operate the system, and user
mistakes will not worsen performance. Online Person-
alized Optimization: The system uses an annotation pro-
gram on the mobile device to gather new training data which
is used to improve the recognition algorithm at run-time.
Crowd-Sourcing: Not only does this feedback optimize lo-
cal recognition, it also is used to improve performance over
the whole community of users. This also means that feed-
back from remote users in the community improves recog-
nition for local algorithms, which represents a novel break
with conventional recognition algorithms.

To use the ActiServ system, the user downloads a base
recognition app for the mobile phone that already provides
decent recognition of everyday activities and can be used
immediately. The user can then improve recognition rates
by performing a few personal training steps, providing feed-
back to the system. The system does not apply further re-
strictions, meaning a steep learning curve should be avoided
and normal usage of the device should not be affected.

Related Work As early as 1999, the project TEA [13] pro-
posed methods for recognizing context with low-level sen-
sors, demonstrating the general feasibility on an extended
Nokia mobile phone. The context-aware mobile phone Sen-
Say [14] is designed to, among other features, automatically
turning the ringer on and off and prevent inaudible ringer
volume in a loud environment. However it requires an ex-
ternal sensor box on the user’s hip as well as ambient micro-
phones on their body. Wearable sensors are also employed
in the iLearn system [12] for Apple’s iPhone — in that case
the Nike+iPod Sport Kit.

Activity recognition based on fuzzy classifiers is pre-
sented in [9] and [16]. Both systems use external sensors

with a fixed body position and do not implement the recog-
nition on an embedded device. In [10] an activity recogni-
tion module is applied to a health care monitoring system.
[1] is an often cited publication on activity recognition in
pervasive computing using acceleration sensors located on
four limb positions and the hip. In [11], the eWatch sens-
ing platform is used to detect six activities. The eWatch is
carried in the test subject’s pocket among other body posi-
tions. [6] and [8] both do activity recognition with mobile
phones, where [6] only uses sensors and resources native
to the phone for sensory acquisition and classification, but
just six activities are distinguished with only 80% recogni-
tion accuracy on average. In [8] a wristband in combination
with a mobile phone is used to recognize six activity classes.
While today many activity recognition systems exist, few
of them combine the following desirable features: The sys-
tem should be able to achieve high overall recognition rates
for a reasonable amount of activity classes. For that task
it should only employ the internal sensors of an unmodi-
fied commodity cellphone on which the recognition is done
internally. Furthermore the system should have been evalu-
ated using a fairly high number of test subjects. Of the de-
scribed systems, only one system [1] has been designed to
recognize more classes than the system presented in the pa-
per at hand. It also has been evaluated using the same high
number of subjects. However, the recognition rates of said
system are significantly lower than those of ours, in spite
of the fact that it uses five external acceleration sensors that
need to be placed in fixed positions. In terms of high recog-
nition rates, ActiServ ties with iLearn [12], whereas Acti-
Serv goes without the use of external fixed sensors. Of the
systems that were surveyed, only ours and two others [11, 6]
exclusively employ non-fixed sensors. Again, the recogni-
tion rates lie well below the ones our system achieves. One
of these systems [11] also does the classification on the de-
vice, as well as ActiServ and three others [8, 12, 7]. How-
ever, the latter three employ fixed sensors for the activity
recognition. ActiServ is the only system combining the de-
sired features described above. In addition, ActiServ has
the unique features of being service-oriented and personal-
izable to the individual as well as the community as a whole.

2. The Architecture

The problem of personalized activity recognition was
solved with a service based approach. The service consists
of several steps of activity classifier training, optimal clas-
sifier selection, classifier personalization, and user accuracy
feedback. Each step is realized by different components ei-
ther located on a server or the user’s phone. All steps and
components of ActiServ are displayed in Fig. 1 and de-
scribed below. Subsequently, the workflow of the service is
presented.

Machine Learning Expert
Global | ,iSupervision 0
o Trainer ‘\‘ \ Accuracy
¥ Service N\ T~ Feedback |} |8
~ Great / Ok / Trash _ 4 (miErEee &
Data / Classifier| | Activity Recognition ™~
Server Exchange Data Phone
1 __ collector
Data/ Data Transmission Tool Q
Classifier -
sets TClassifier Modules

Transmission Activity
2 T Classification

Data / Classifier Modules

Exchange Y

Personal . .
Trainer T Bit-vector > B'l:.'
Service ransmission asking USER

Figure 1: ActiServ service architecture.

Activity Classification Module Set (ACMS): The ACMS
is the collection of classification modules which are running
on the user’s mobile phone at a given time.

Global Trainer Service (GTS): The GTS is the key com-
ponent which trains new Activity Classification Module
Sets (ACMS). The GTS frequently checks the database
for new user activity data sets or for combinations of user
data which have not been used. When data is found, the
GTS creates a new ACMS using the new data combination.
Through the GTS the database is constantly filled with new
ACMSs, where badly performing ACMSs are replaced to
ensure that the database always consists of the best perform-
ing ACMSs.

Personal Trainer Service (PTS): The PTS selects which
activity classification modules are delivered to the user de-
vice. The decision is made based on the performance of the
classifiers over the annotated data collected by the user. The
PTS is also responsible for personalizing the classifier mod-
ules. This process will be explained in depth further on in
this paper.

Data/Classifier Set Database: This unit is the central
storage for the global ACMSs and user data.

Bit-Masking: The bit-masking provides a method for per-
sonalizing an ACMS without destroying its original activity
recognition capabilities.

Data Collector Tool (DCT): The DCT on the mobile phone
collects annotated activity data. The user selects the activity
they want to perform from an extensible set of activities in
a drop-down-list, carries out the activity, and then pushes a
button to stop recording.

Accuracy Feedback Interface (AFI): With the AFIL, the
user can give feedback to the GTS/PTS as to whether their
activity recognition is working. This feedback is not used
for personalization per se, as the personalization process is
done using the bit-mask, but rather could be used to change
the training process in general, though this is not currently
implemented and outside of the scope of this paper.

ActiServ Workflow - How the Service Works First, the
user downloads the ActiServ components to the phone. Sec-
ond, a small amount of initial data must be collected, where

each of the activities available in the drop down list of the
DCT is carried out for 1-2 minutes. When all of the activi-
ties are complete, the data is transmitted (step 1 Fig.1) to the
ActiServ server. At this point, the interaction between the
user and the service is finished and will only be re-initiated
over the AFI if necessary. On the server the PTS selects
the best performing ACMS from the database based on the
initial data and transmits the set to the user device (step 2
Fig.1). This step has nearly no delay, since only a search
over the pre-existing ACMSs must be done and no train-
ing is performed. The transmitted ACMS can now run on
the users phone and recognize activities with an initial ac-
curacy. Meanwhile the PTS is training the personalization
of the ACMS currently running. This process takes time
(depending on efficiency and complexity about 1 hour), but
since an ACMS is already running on the user’s phone, the
delay is not directly recognizable for the user. The per-
sonalization data, which is just a bit-vector and not a com-
plete ACMS, is transmitted to the phone in step 3 (Fig.1).
On the phone the bit-masking component personalizes the
ACMS, which can be done during runtime in between clas-
sifications. Now the phone should have reasonable activity
recognition rates (see evaluation), but the process runs fur-
ther on the ActiServ server. The GTS constantly trains new
combinations of ACMSs, in which the new user’s data is
included as well. Over time, an ACMS is present in the
database which has been trained on the data from the new
user and can be transmitted to the user’s phone (recogni-
tion rates can rise to above 97%). This new ACMS can be
personalized again via the PTS and therefore be further im-
proved. The user can also give feedback to the system via
the AFI (step 4 Fig.1), but this is not necessary. If the Acti-
Serv is in a faulty state due to bad user data, an expert can
intervene.

3. Activity Classification Module Set

For activity recognition we use a novel Activity Classi-
fication Module Set (ACMS), through which we are able
to classify a large number of classes with reduced calcula-
tion effort. The ACMS system can provide accuracy of over
97%. In this section, we first explain a simplified mono-
lithic activity classification approach and then extend the
architecture to the ACMS.

3.1. Recurrent Activity Classification

The classification consists of several steps of processing
a real world value to a tuple of the class recognized and a
fuzzy uncertainty value. The system (Fig. 2) is presented in
the following, a detailed description can be found in [3].
1. Feature Extraction: The features for activity recogni-
tion with the used 3-axis accelerometers are variance and

—_———— e ——— e —— — —

Classification Module M
Mapping Fuzzy
Function Classification

Tor ~~ [Fuzzy

*‘RF\TIS\ = Numbers

T : ;

Real Sensor Feature
World Y Extraction
Acc.- Mean /

] ||
e 8
I ?ﬂi"‘r‘*’ﬁ‘ ~

-

Recurrent

dge

L

| E
Signal Sampled Feature =~ Mapping ClassT
Signal Vector Value Uncertainty

Figure 2: Classification system architecture.

mean values (two 3D acc. sensors — 12-dim. feature
vector). 2. Recurrent FIS Mapping: We use a Takagi,
Sugeno and Kang [15] (TSK-) with linear functional conse-
quences as mapping function. The output of the TSK-FIS
is assigned to a tuple of class and fuzziness. The outcome
of the mapping at time ¢ is fed back as input dimension n
for the TSK-FIS mapping at ¢ 4+ 1. Instead of ‘Recurrent
TSK-FIS’ we use the simpler term RFIS in the remainder
of this paper. For more detailed information on this pro-
cess please refer to [2]. 3. Fuzzy Classification: The
assignment of the RFIS mapping result to a class is done
fuzzily, so the result is not only a class identifier, but also
a membership, representing the reliability of the classifica-
tion process. Each class ¢ is interpreted by a triangularly
shaped fuzzy number. The highest degree of membership
to one of these numbers determines which identifier is the
mapping outcome. The overall output of the classifier mod-
ule M (which encapsulates the RFIS and the fuzzy classi-
fication) on the feature vector ¥'; is a tuple (c, jc,) of a
class identifier and the membership to it, where ¢, € C and
te, € [0,1] (cf. [3]). 4. Fuzzy Uncertainty Filter: The
classifications vary strongly with respect to fuzziness and
therefore in the reliability of the RFIS mapping. Since more
classifications are made than needed for most applications,
a filter on the fuzzy uncertainty (., < 7) can improve re-
liability, but also reduces the number of classifications.

3.2. Activity Classification Module Set

Instead of using one monolithic classifier to classify on
all classes C, we use several classifier modules M; : V — C;
(with¢ = 1, .., N) each classifying on a small subset C; C C
of classes. The subsets C; are chosen according to the
classes c¢;; € C; semantics, therefore each subset C; has
its own meta semantic. We call this meta semantic ‘con-
ditional context (cc)’. To not only recognize the respec-
tive classes ¢;; € C;, but also the transition between clas-
sifiers M;, each module yields a complementary class ¢; as
well, where the complementary class represents all classes
classified by other modules but not by this one. All clas-
sifier modules are chained in a dynamic queue, where the
last classifier successfully classifying a class aside from the
complementary class is moved to the front.

To train these queued classifier modules, we need to train

them on the respective classes c;; € C; and on the comple-
mentary class ¢;. The training V" and check data sets V¥
for a classifier module M; are unified with a selection of in-
put data pairs of all other classifiers Vi C |, Vi"- This
selection is labeled zero — which indicates the complemen-
tary class ¢; in every module M; — and added to the normal
training and check data sets of this classifier. The actual
training and check data is therefore V!"“ and V*¢, which
are called V!" and V¢ in the rest of this paper for reasons
of simplicity. More analysis on the modular classifier ap-
proach can be found in [4].

4. Global Trainer Service (GTS)

A classification system which is trained on a large data
set of multiple users has disadvantages. First, the training
algorithms have long calculation times, since the training
data set increases with every user added to it. Second, the
resulting Activity Classification Module Set (ACMS) is in-
accurate and complex. Since the diversity of the training
data due to the different users is high, the classifier modules
need a large number of rules in the RFIS mapping function
to map the data. The data is partly contradictory, because
different users have different patterns for certain activities.
In this case, either one user’s training data is preferred to
solve the conflict, or both are classified with low accuracy.
Instead of training the ACMS on the training data of all
users in the database, we select subsets of user-specific data
and train the classifier modules on them. Instead of one set
of modules, we end up with various sets trained on sub-
sets of the users. All the ACMSs are stored in a database,
where only the best and fittest ACMSs remain and the worse
performing are deleted. With each new user added to the
database new data combinations of users become possible,
so the GTS is constantly running and training new ACMSs.

4.1. Activity Classifier Module Training

To train a set of activity classifier modules, we used a
machine learning algorithm [3] that is fast and requires a
minimal amount of supervision from an expert. The part of
each activity classification module that needs to be trained is
the RFIS mapping function. A five step algorithm is used to
identify the RFIS on an annotated training feature set. The
algorithm is described in [3], a brief description follows:

1. Data Annotation and Separation: The training data
V'™ is separated according to the class ¢; to which the data
pairs belong. Clustering on each subset delivers rules that
can be assigned to each class. 2. Clustering: First, sub-
tractive clustering gives an upper bound for the amount of
clusters that is then used for Gath-Geva clustering. Since
subtractive clustering results in more clusters than Gath-
Geva clustering (multivariant cluster shapes for covariant

sensor data), a genetic algorithm is used to determine the
best subset of cluster centers. The output of the Gath-Geva
clustering is the number of rules and the membership func-
tions. 3. Least Squares: Linear regression identifies the
parameters of the linear consequence function of the rules.
Minimizing the quadratic error leads to the solution of an
overdetermined linear equation. 4. Recurrent Data Set:
The output of the TSK-FIS is now calculated over the train-
ing data V", This output is shifted by one, with a leading
zero, and then added to the training data set V" as an ad-
ditional dimension. All data pairs for time ¢{ > 1 have the
output of the FIS mapping of ¢ — 1 in the recurrent dimen-
sion n. For this data set the steps 1 to 3 are repeated. 5.
Stop Criterion: There are two values qualifying for a stop
criterion: the mean quadratic error and the classification ac-
curacy. For our evaluation scenario we used the latter.

4.2. ACMS Training

The training V" and check data V¥ for one classifier
modules set M; = {My,,..,My;} consists of data from
randomly selected users (up € {uy,..,ua}), represented
by V,, . The training data Vj(,'ll for the classifier module set
M| is a subset selection of the data Vfal CVu, U UV,
for ¢ # .. # h, where each of the classes should have
equal amount of training data pairs and the data from ev-
ery user should contribute same amount of data sets. For
the check set Vj;ﬁl we proceed accordingly. All user data
is saved in a database, from which different combinations
of data are randomly selected. on each selection a new set
of classifier modules set M is trained. The set M; is then
checked with the respective check data V/C\ﬁl for classifica-
tion accuracy. This process is repeated until all combina-
tions of user specific data are trained and checked, where
only a certain population of ACMSs which have the highest
classification accuracy is saved. With new user data com-
ing in through the community, the process can theoretically
run indefinitely. The amount of stored classifier module sets
should increase with the amount of new user data added to
the database. Since storage space is limited, the amount can
not be increased indefinitely.

5. Personal Trainer Service (PTS)

The classifier module set M; which performs best for
the current user is selected and must then be personalized
to recognize activities with acceptable accuracy. This is
done via a bit-vector masking, which ’activates’ or ’deac-
tivates’ the input dimensions of the rules of each module’s
RFIS mapping function. This masking is only temporary, so
the original classifier modules still persist and can be reacti-
vated at any time. Furthermore, the bit-vector and therefore
the capabilities of the masked classifier can be changed at

any time. The bit-vector is specified for the respective user
according to the data V), on which the module set M; was
selected. Since the combinations of bits in the bit-vector ex-
clude a full search, a genetic algorithms is used as a heuris-
tic to limit the search space.

5.1. ACMS Selection

The first step towards a user’s personalized activity clas-
sification system is the selection of the best classifier mod-
ule set from the database. The selection is done based on
an initial data set which the user has previously collected.
The data set should consist of a significant amount of data
pairs for all activity classes. For every classifier module set
M; (I = 1,.., A) the classification accuracy for the new
user data is calculated. The classifier module set M; which
has the best classification accuracy is then selected for the
activity recognition on the user’s device.

5.2. Bit-Vector for ACMS Masking

The adaption is done via a bit vector, which specifies
the ‘active’ and ‘inactive’ dimensions of each rule for one
module M;. Therefore the bit vector bith_ for module M;,
which has n input dimensions and m; rules, is b; :=n - m;
positions long. To use the bit vector, an interpretation func-
tion I(M; (), bitpy) is defined, that ‘switches’ the rule’s
dimensions temporarﬂy without changing the module M;
permanently. The interpretation function [is defined as a
function mapping a module M € F(R", R) together with a
bit vector bitpg € {0,1}* of appropriate length to a mod-
ule M. Details on the bit vector approach can be found in
[5]. A genetic algorithm is used to determine the respec-
tive classifier module’s bit vector. The space that has to
be searched is 2%, a complete search would therefore have
a runtime of O(2%), which is impossible to calculate in a
reasonable amount of time. In our experience, the genetic
algorithm can find a suboptimal, but appropriate solution in
a time span that is acceptable in our application.

6. Online ACMS Implementation and Evalua-
tion

For the online ACMS evaluation we used the OpenMoko
Neo Freerunner phone based on the Samsung S3C2442B
processor clocked at 266MHz using a Debian Linux oper-
ating system enabling rapid prototyping. We are also cur-
rently investigating implementations on the iPhone 3G and
the Motorola Milestone running the Android operating sys-
tem. The ACMS is implemented in C and the parameter
setting is provided through a JASON configuration file.

Performance Evaluation To gather meaningful perfor-
mance data, we must first compute whether the require-

ments for real-time processing can be achieved: the ac-
celerometer sensor provides 100 samples per second and
each classification requires window size of 8 samples in the
feature extraction. Thus, if we want to achieve real-time
performance, we must be able to perform 12.5 activity clas-
sifications per second. For the classification processes, a
distinction must be made between the best and worst case:
in the best case, the first classifier module of the ACMS is
able to classify the data, and in the worst case, all classi-
fiers modules need to be computed. Each process was run
1000 times to gather significant performance results. The
results indicate that we only require from 1.3% (best case)
to 4.9% (worst case) of the available processing power. Of
that, 0.012 PP are used for the feature extraction and 0.093
PP (best case) to 0.38 PP (worst case) for the classification.
The Neo FreeRunner’s processor does not feature floating
point instructions, meaning that all floating point calcula-
tions have to be simulated using the integer instruction set.
With a phone providing a floating point unit (e.g. iPhone
3G) we would need approximately ten times less process-
ing time.

Also, the processor time for the ACMS was observed for
131 minutes in a trial period in order to evaluate CPU uti-
lization. The measurements showed a CPU usage of 3.3%
for the ACMS on average.

7. Offline Activity Classification Evaluation

The ActiServ system was evaluated offline. First, the
evaluation settings will be explained, followed by a demon-
stration of upper and lower bound approximations for the
optimal case where the training data for the classifier mod-
ules are only gathered from the evaluation user. In the next
step, an ACMS is selected from the database where data
from the current user is not present, meaning there is no
ACMS available which was directly trained on data from
this user. The accuracy of the best performing ACMS un-
der these circumstances is presented. Next, personalization
using the PTS to provide bit-vectors for each module is pre-
sented where data from the current user is excluded from
the database. Finally the performance of the whole system
including data from the evaluation user as well as the com-
munity is presented, where different phone orientations and
personalization are applied.

7.1. Evaluation Setting

As mentioned before, there is a distinction between con-
text classes and conditional contexts (cc). The classes are
the direct output of the classifier, whereas the cc is implic-
itly identified through the classifier module which is cur-
rently active. The classes are sorted according to semantics
of the cc. Three general cc were determined, the phone is on

a table, the phone is in the pants pocket and the user has the
phone in her hand. The cc the phone is in the pants pocket
is split in subsequent contexts according to the amount of
movement of the phone, movement or no movement. The
combinations of contextual states, classes and classifiers for
the acceleration data classification are shown in Tab. 1.

Conditional Context Class Class Classifier
Context) No. Module
Phone in users user is sitting 1
pants pocket: user is standing 2 M
no movement user is lying 3
user is walking 4
user is climbing stairs 5 M;
movement user is cycling 6
[Phone on table: [no movement [7 T M |
Phone in users just holding 8
hand: talking on phone 9 My
typing text message 10

Table 1: Conditional contexts, classes and
classifier modules for the acc. sensor.

We collected data from 20 users (16 male, 4 female),
aged 20 to 32. All users had experience with the use of mo-
bile phones. We tried to ensure that the collection of activi-
ties was as realistic as possible. Each test user generated 2-
3 minutes of data for each of the ten activity classes during
normal everyday activities, resulting in over 500 minutes of
data in total.

The classifier module sets are trained on randomly se-
lected sets of four users. 19 of the 20 users were used dur-
ing the training phase, leaving the data from one user for
evaluation of the ActiServ system. The male test subject
used for the evaluation provided data with two different ori-
entations for the *pocket’ activities. All the test data used in
the following evaluation is randomized in slices of 16 data
pairs. This is a stress test in the evaluation, since due to the
recurrence in the modules, the most false-positives occur in
between activity classes.

In the following tables the recognized activity classes are
filtered on a threshold of 7 = 75. This reduces the amount
of classes which are recognized by a certain amount, de-
pending on the general detectability of the respective activ-
ity. Which percentage of the classification remain after the
filtering is shown in the last row of the confusion matrices.
We expect that a remainder of more than 8% of classifica-
tions to be acceptable, so on average still one classification
passes through the reliability filter per second.

7.2. ACMS Trained on Evaluation User

The best results for activity recognition can be achieved
when the ACMS is directly trained on the current user. This
gives us an upper limit for activity recognition accuracy for
a 3-minute training cycle. Data collection resulted in about
2250 feature vectors per class and 22500 in total for all ten
classes. Out of this annotated data set, 600 samples per

class were extracted for training data V" and 400 for check
data V°*. For training the complementary class of each of
the modules, 1200 data pairs were randomly selected from
training data of the other classifier modules and added to
the training data. For the check of the complementary class,
800 data pairs were added to the check data. The remaining
data — ~ 1250 annotated feature vectors per class — was used
to test the ACMS. The upper limit results for the trained
ACMS are presented in Tab. 2.

M; (98.1%) M, (964%) | M3 | My (99.3%)
1|23 |4 5] 617|871 9710
T [978| 08 | 01 | 42 | 02 | 0.7 | 04 | 0.0 | 03 | 0.0
2 |06]93] 1209 000000 00]0L|00
3 0000|974 00| 01|00 00]00]00]00
4 08| 13|12 |923] 01| 02]00]09]06]00
5 |00] 000003 [97.7| 1.6 | 0.0 | 0.0 | 0.0 | 0.0
6 | 00] 00| 010000 [971] 00000000
7 | 05] 0000|0000 00 [995] 000000
3 [03 | 10| 00|22 | 15103 |01 [97.6] 1.1 | 0.0
9 | 01]05]|00]| 0204|0100 L4 |[97.8] 08
10/ 00 | 00| 00|00 | 0L |00 00]0I]O01][9.1

[83.9[83.2[93.5]694[57.5]74.5[91.7]86.3]83.2]935 |
Table 2: Upper limit classifier system, solely

trained on eval. user. Threshold ~=0.75, con-
ditional context (cc): 98.3%, overall: 97.3%.

A lower baseline limit can be expressed when the classi-
fier was trained on one phone orientation (e.g. for the phone
in the pants pocket) and the evaluation is carried out on data
from the user when carrying it in a different position, which
represents a major problem in activity recognition. The
recognition results for the test data with a different phone
orientation then the training data are shown in Tab. 3. Here
the classes for the cc ’phone in user’s pants pocket’ have
extremely low recognition rates, where the activities with
only one possible orientation still have high accuracy. We

M, (64.6%) M, (514%) | Ms | My (99.7%)
1| 23|45 |6 7|8 9110
20.7 | 447 | 01 |30.1 102|200 | 0.1 | 0.0 | 0.1 | 0.0
02 | 293 0.7 | 124 | 25 [21.8| 0.0 | 0.0 | 0.1 | 0.0
00 | 00 |982| 1.0 | 02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
0.0 | 209 0.5 |552 | 841|135 0.0 | 02 | 05 | 0.0

—[\O| co| | O\ W | W o] —
=]
(=]
f=]
[=)}

SILI22 e
o &
(=}
[=))
=
(=)}
[=]
%)
[=]
(=]
[=]
(=]
[=]
(=)
f=]
(=)

[0.0 [00 [00| 00| 00| 00 00 0.1 | 0.1 [993
[39.6 [22.8 [92.1] 31.4 [34.8 | 11.9 | 94.6 | 89.8 [89.8 [962 |

Table 3: Lower limit classifier system for po-

sition 2, solely trained on actual user’s posi-
tion 1. 7=0.75, cc: 78.9%, overall: 60.0%.

show in the evaluation of our service-based approach, that
the recognition accuracy achieved is not significantly lower
than the upper limit and can exceed accuracy for the lower
baseline limit.

7.3. Eval. User Excluded from Training

As explained before, the upper limit classifier mod-
ules cannot be supported in a community-based approach
due to several reasons. We show that we can exceed the
lower baseline limit for a different phone orientation with
our service-based approach and present example results for
each of our service’s steps.

GTS Trained ACMS for Random Selection of User Data
The Global Trainer Service (GTS) has trained 20 Activity
Classification Module Sets for randomly selected sets of
four users from the 19 users in the database. The training

User Accuracy (%) || User Accuracy (%)
Combination | V" | VeF Combination | V7 | pek
17,2, 1,11 86.0 | 83.1 18,4,7,15 85.6 | 814
12,11, 1,7 83.9 | 832 4,7,2,15 85.06 | 83.7
6, 14, 15,16 | NaN | NaN 12,17,7,16 | NaN | NaN
16,13, 12,7 | NaN | NaN 9,13,18,17 | 829 | 82.5

3,6,8,4 85.2 | 82.7 13,6,2, 16 82.7 | 80.2
15,16,12,2 | 66.3 | 66.1 3,17,16 14 | 69.5 | 64.5
13,8,6, 1 84.5 | 80.2 13,1,16,2 83.9 | 80.7

10,7,12,2 84.7 | 81.2
5,1,10,1 725 | 714
9,5,18,8 82.7 | 69.0
Table 4: GTS combinations of user data, ac-
curacy of ACMS (training/check data). Gray
rows indicate faulty ACMSs that are deleted.

10, 15,4, 5 84.7 | 82.8
7,5,17,12 82.7 | 80.8
5,13,19,8 NaN | NaN

data V'" consisted of 300 randomly selected feature vectors
per class and user, which makes 1200 pairs per class. Again,
training data from the other modules was added to train the
respective classifier module on the complementary class. In
total we used 12000 data pairs for training of all four classi-
fier modules. The check data consisted of 6000 data pairs.
The accuracy for the ACMSs, trained on training data V"
and check data V. is shown in Tab. 4. For some of the
ACMS an error occurred during training and the accuracy
on the training and check data is "Not a Number (NaN)’.
These ACMSs are deleted by the GTS from the database
along with badly performing ACMSs.

Best Selection of Classifiers A new user now demands an
ACMS to recognize the 10 activity classes in our evaluation
setting. The PTS selects the best performing ACMS on the
user data and uploads the ACMS to the user phone. The best
selection is the ACMS trained on the users 10, 7, 12, and 2.
A mean recognition rate of 62.4% (7 = 0.75) is low, but the
more user invariant activity classes were recognized with
over 90% accuracy. Also the cc have an accuracy in detec-
tion of 71.2%, which is already a good recognition rate, for
an ACMS that was provided without delay.

Personalization Data and Test Data Have Same Orienta-
tion The PTS now provides a bit-vector for masking the se-
lected ACMS, and therefore personalizes the activity recog-
nition. The resulting confusion matrix is displayed in Tab.
5. The recognition rates have improved significantly by

M; (90.2%) M (72.8%) M3 My (97.0%)

1 2 3 4 5 6 7 8 9 10
1 |84 27 |10 [315| 1.7 [298| 02 | 02 | 59 | 09
2 14 184904 | 1504 |09 |00] 00]08]02
3 00 | 07 [942] 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
4 1.3 191 |24 [549| 04 |00] 01 |00/ 08]0.0
5 01| 1.0] 13] 00 [925| 55| 0.1 | 00 | 00| 0.1
6 |11.6] 0.0 | 00 | 0.0 | 39 |61.3| 0.0 | 0.0 | 0.0 | 0.0
7 1001]001]00|00]00]001]9.3|00]0.0] 00
8 100 | 16|01 [105]| 1.0 | 1.7 | 02 |984| 1.2 | 0.0
9 100]00]04]15]007]097]01]| 149909
10/ 01] 00]00]007]007]007]00]00] 04979

[19.9[24.9 [42.5] 234 [184 | 11.6 | 41.9 [22.6] 259 [40.8 |

Table 5: Best performing selection personal-
ized on new user.7=0.75,cc:89.8%,all:86.0%.

23.6 PP up to 86%. Still, classes no. 4 and no. 6 have low
recognition rates. These classes are mostly misclassified
onto class no. 1 of a different classifier module. Here the
personalization process of the PTS can be improved, so that
the classifier module M; is not personalized to the point it
interrupts the capabilities of module M. But this is a trade-
off, where the stop criterion of the genetic algorithm used
in the PTS plays the key role. Either modules have equal
average recognition rates or one is favored in the disadvan-
tage of another one. This can also happen between classes
classified through the same module.

Personalized Opposite Orientation in Training and Test
Data The PTS has personalized the ACMS via a bit-vector
masking according to a data set, where the phone has only
one orientation in the user’s pants pocket. We are investigat-
ing now what happens if the user is carrying the phone with
a different orientation, which is a situation that frequently
occurs in daily usage of mobile phones. The results of a test
set with about 22000 data pairs for a different phone orienta-
tion are shown in Tab. 6. The accuracy is on average low at

M; (79.3%) M; (83.6%) M3 My (99.4%)
1 2 5 9

—=[0| oo | O\ L] | W o —

w2

W

(=]

(=]

- «
=) J
W

oo

(=]

=

(=]

—_

(=

(=]

(=]

(=]

(=]

(=]

(=]

(=]

0] 00 [02 [0.1 0000010000 1.1 993
[12 [153 [43.1] 435 [480 | 44.5 [944 50.0 [592 | 823 |

Table 6: Best performing selection personal-

ized on new user, test data has different ori-
entation. 7=0.75, cc: 90.6%, overall: 63.6%.

63.6%, but as mentioned before, we need to compare these
results with the lower baseline approach. There the ACMS
was directly trained on the users data with one phone ori-
entation, which is the general approach of a user who has
no knowledge of machine learning techniques. Compared
to the lower baseline, we can exceed the recognition rate by
3.6 PP. With the recognition rate for the cc we can reach

a more significant improvement by 11.7 PP up to 90.6%.
Here user feedback through the AFI can trigger a repeated
personalization via the PTS, or the GTS could have already
trained a new ACMS which would perform better with the
different phone orientation.

7.4. Summary and Discussion of Results

Since our Activity Recognition Service (ActiServ) con-
sists of many steps, we now want to summarize and discuss
the results. The recognition accuracy for our example im-
plementation compared to the upper and lower baseline is
shown in Tab. 7. The numbers show, that we can reach

Accuracy of Accuracy of Delay
Service Step Activity Cond. Context Until
Recognition Recognition Available
[Upper Limit [973%] 98.3% [days |
| Lower Limit [60.0% | 78.9% [none |
Selected ACMS 62.4% 71.2% seconds
Pers. ACMS 86.0% 89.8% hours
Pers. ACMS
tested with diff. 63.6% 90.6% hours
orientation

Table 7: Recognition accuracy results.

reasonable recognition rates (71% for cc) and high rates
(> 90%) for some classes using initial data with ActiServ.
This activity recognition is delivered through our service
architecture with a delay of only seconds. The personaliza-
tion step does require a longer computational period (a few
hours), where the key factors for duration are the complex-
ity of the ACMS and the efficiency of implementation of the
PTS. After personalization we reach recognition rates of up
to 90%, with the exception of two classes, where this low
accuracy could be accounted for through a better tradeoff in
the PTS algorithms. With the ActiServ system we also can
exceed the lower baseline limit for opposite phone orienta-
tions not included in the GTS training (11.7 PP for cond.
context). In general, with the GTS constantly training new
combinations of ACMS on the user data in the database, we
can reach the upper limit of over 97% accuracy with a run-
time duration of a few days. Due to the random selection of
training data, the delay may also only be a few minutes.

8. Conclusions

We presented an Activity Recognition Service (Acti-
Serv), which aims to support activity recognition on mobile
phones for common users. No user knowledge of machine
learning is needed, nor are behavioral changes required in
order to achieve results. The service provides an interface
for annotating initial data, which then suffices for selec-
tion of the proper classification modules. Back-end services
constantly improve recognition through personalization and
simultaneously optimize recognition throughout the Acti-
Serv user community. We presented an evaluation for each

of the service’s components and compared the results to up-
per and lower limits. The results indicate that ActiServ pro-
duces recognition rates of over 97% for the individual user,
while also improving results for users carrying their mobile
devices in uncommon orientations while maintining a low
processing usage and power consumption profile.

ActiServ becomes especially powerful in combination
with [3], where a modular extensibility of the proposed
recognition concept is shown. This will maximize the flex-
ibility of activity recognition, and make it usable for every
user.

Acknowledgments: This work has been (partially)
supported by the NTH (Niedersaechsische Technische
Hochschule) School for IT Ecosystems and the European
Commission founded project CHOSeN.

References

[1] L. Bao and S. S. Intille. Activity recognition from user-
annotated acceleration data. PERVASIVE, 2004.

[2] M. Berchtold and M. Beigl. Increased robustness in context
detection and reasoning using uncertainty measures - con-
cept and application. Ambient Intell. (AmI’09), LNCS, 2009.

[3] M. Berchtold, M. Budde, H. Schmidtke, and M. Beigl. An
extensible modular recognition concept that makes activity
recognition practical. German Art. Int. (KI'10), LNAI, 2010.

[4] M. Berchtold, T. Riedel, M. Beigl, and C. Decker. Awarepen
- classfication probability and fuzziness in a context aware
application. Ubiquitous Intell. and Comp., LNCS, 2008.

[5] M. Berchtold, T. Riedel, K. van Laerhoven, and C. Decker.
Gath-geva specification and genetic generalization of tsk
fuzzy models. Sys., Man and Cyb. (SMCO0S), IEEE, 2008.

[6] T. Brezmes, J.-L. Gorricho, and J. Cotrina. Activity recog-
nition from accelerometer data on a mobile phone. In Pro-
ceedings of the INVANN °09, pages 796—799. Springer, 2009.

[7] S. Consolvo and D. W. McDonald, et al. Activity sensing in
the wild: a field trial of ubifit garden. In CHI. ACM, 2008.

[8] N. Gyorbird, A. Fabian, and G. Homdanyi. An activity recog-
nition system for mobile phones. MONET, 2009.

[9] M. Helmi and S. AlModarresi. Human activity recognition
using a fuzzy inference system. FUZZ-IEEE, 2009.

[10] Y.-J. Hong, I.-J. Kim, S. C. Ahn, and H.-G. Kim. Mobile
health monitoring system based on activity recognition us-
ing accelerometer. SIMPRA, 18(4):446 — 455, 2010.

[11] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher.
Activity recognition and monitoring using multiple sensors
on different body positions. In BSN ’06. IEEE, 2006.

[12] T. S. Saponas, J. Lester, and J. E. Froehlich, et al. ilearn
on the iphone: Real-time human activity classification on
commodity mobile phones. CSE Technical Report, 2008.

[13] A. Schmidt, K. A. Aidoo, and A. Takaluoma, et al. Ad-
vanced interaction in context. In HUC’99, LNCS, 1999.

[14] D. Siewiorek, A. Smailagic, and J. Furukawa, et al. Sensay:
A context-aware mobile phone. In ISWC ’03. IEEE, 2003.

[15] T. Tagaki and M. Sugeno. Fuzzy identification of systems
and its application to modelling and control. SMC, 1985.

[16] J.-Y. Yang, Y.-P. Chen, and G.-Y. Lee, et al. Activity recog-
nition using one triaxial accelerometer: A neuro-fuzzy clas-
sifier with feature reduction. In ICEC. LNCS, 2007.

