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Abstract Energy storage is quickly becoming the limiting
factor in mobile pervasive technology. We introduce a novel
method for activity recognition which leverages the predictabil-
ity of human behavior to conserve energy by dynamically
selecting sensors. We further present a taxonomy of exist-
ing approaches to dynamically reducing consumption while
maintaining recognition rates. The novel algorithm conserves
energy by quantifying activity-sensor dependencies, and us-
ing prediction methods to identify likely future activities.
The approach is implemented and simulated using two activ-
ity recognition data sets and the effects of the novel method
are evaluated in terms of recognition rates, energy consump-
tion and prediction rates. The results indicate that switching
off sensors only significantly affects prediction under ex-
treme conditions, and that these effects can be counteracted
by adjusting system parameters. Large savings in energy can
be achieved at very low cost, e.g. recognition losses of 1.5
pp with 84.8% energy savings for the first data set, and 2.8
pp and 89.9% for the second.

1 Introduction

As concepts from pervasive and mobile computing become
more mainstream, the community seeks practical approaches
for realizing pervasive technology. Situation, context or ac-
tivity recognition techniques provide a method for machines
to recognize human and social situations, allowing them to
act proactively without contradicting or offending their users.
Modern devices such as smart phones or wireless sensor
nodes are now able to support these algorithms [28] as pro-
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cessing power and memory improve over time according to
Moore’s Law.

Energy storage in such devices is not subject to the same
doubling effects and is quickly becoming the limiting factor
in pervasive technology. This can be seen clearly when re-
viewing the battery lifetimes for mobile phones over the past
10 years. The cost of communication in terms of energy con-
sumption is another factor which does not scale according to
Moore’s Law, indicating that for intelligent wearable appli-
cations to be practical, methods for low power situational
recognition must be embedded in mobile devices.

Embedded classification for mobile devices is not a new
concept and goes as far back as 1997 [8], where Bouten el al.
used simple signal processing techniques to measure activ-
ity levels of users wearing a mobile device. Several methods
for low power embedded context classification have been in-
troduced in the activity and context recognition community.
Cacmakci et al. [9] and Stäger et al. [27] introduce straight-
forward approaches to low power recognition of contexts
and activities in embedded systems using inertial or audio
sensors respectively. Krause et al. [17] propose to dynami-
cally reduce sensor sampling rates to conserve energy, thereby
greatly increasing battery lifetime. A similar approach was
presented by Sun et al. [29] where coarse-grained activity
levels were locally recognized to adjust the sensor sample
rate. Benbasat et al. [2] introduce a method for conserv-
ing energy in a system with redundant sensors which are
switched on and off dynamically based on the level of ac-
tivity currently measured. Roy et al. [25] use sensor config-
urations which are selected for specific activities based on
the minimum requirements of an application. The result of
the research mentioned is that there is always a trade off be-
tween how well activities can be recognized, and how much
energy it costs to do it [28,6].

We conducted a survey of work done in this field (see
Sec. 2) revealing that focus is mostly on motion-based sen-



sors, with the accelerometer being the most popular sens-
ing modality. The survey also shows that initially, research
was focused on custom hardware and sensor network plat-
forms, but recently it has shifted towards mobile phones.
Early methods for low-power recognition began with sys-
tems engineering, but more recently dynamic sensor selec-
tion and sample rate reduction have been the tools of choice.
These dynamic approaches often use the current activity or
activity level as an indicator of the optimal current configu-
ration, or wake system states hierarchically to conserve en-
ergy.

We present a different, novel method for using context
(or activity) prediction to further conserve energy. Many things
we do have a certain repetitiveness or periodicity about them
[31], and are therefore predictable to a certain extent. This
information can be used to improve recognition abilities [22].
Context prediction is the process of using a context history
to predict contexts, situations or activities which will occur
in the future [20]. This can be done at several different ab-
straction levels [26], ranging from extrapolating raw sensor
data into the future, to predicting abstract concepts such as
activities. We propose that it can also be used to reduce the
power consumption of the recognizing device as well.

The idea is simple. Traditionally, all sensors are used
constantly even though certain sensors may only be neces-
sary to detect specific activities. As a result, energy may be
wasted when sensors are enabled which are not necessary to
detect the current activities. Given a scenario where activi-
ties are performed in a manner which is predictable, proba-
ble future activities can be forecast. Sensors which are not
needed to decipher probable activities from each other can
be turned off (or the sample rate reduced), conserving en-
ergy without greatly impacting recognition rates. The risk,
is that incorrect predictions cause sub-optimal sensor con-
figurations, further leading to incorrect recognition and pre-
diction.

In this work we propose that by leveraging the predictabil-
ity of human actions, it is possible to tip the balance of the
energy/recognition trade off to conserve energy resources.
We proposed this concept in a poster [15] and evaluated it
initially on a single data set [11].Since the initial publica-
tion, other research in the field has emerged [33], but an ex-
haustive evaluation of system behavior as presented here has
not yet been conducted.

The performance is simulated using two preexisting ac-
tivity recognition data sets [14,24], where artificial data sets
are generated from these sets in order to evaluate different
scenario parameters. We evaluated the algorithms in terms
of activity recognition rates, energy savings achieved, and
the prediction accuracy with respect to system parameters.
The results indicate that the novel approach allows for appli-
cation and scenario-specific selection of the recognition/energy
trade off, producing large energy savings, even for small

recognition losses (e.g. recognition losses of 1.5 pp with
84.8% energy savings for first [14], and 2.8 pp and 89.9%
for the second data set [24]).

This article is structure as follows. A survey of research
conducted towards reducing the energy costs of embedded
recognition is presented in Sec. 2. In Sec. 3 the proposed
method and algorithm is presented, including the context
recognition, prediction and sensor selection processes. The
experiment implementation and simulation environment is
presented in Sec. 4, along with a description of the data
sets used and their preparation. Sec. 5 contains the results
of the simulation with respect to energy consumption, clas-
sification and prediction values, the implications of which
are discuss in Sec. 6. Finally the article is concluded in Sec.
7.

2 A Survey of Energy-Efficient Recognition

For embedded and mobile systems, power consumption is
one of the most critical attributes [17]. We surveyed system
approaches for reducing the power consumption footprint of
online, embedded activity recognition in order to generate
on overview of this field. To our knowledge, no such survey
of applications and attributes has yet been conducted making
this a novel contribution of this work.

The survey was conducted based on following param-
eters which where deemed to be of importance for under-
standing the breadth of the research. Motivation for these
parameters is taken from related work, although the param-
eters do not cover the entire design space for such systems.

– Platform: This parameter describes the hardware plat-
form used for recognition. This information is of impor-
tance as it gives the reader an indication of the amount of
resources which are available for embedded recognition.
For example, embedded recognition on a mobile smart
phone [3] probably has an order of magnitude more pro-
cessing power and memory than an embedded wrist watch
platform [17].

– Sensing Modality: The sensors used for an application
give an indicator of the order of the problem. Sensors
have different properties, for example an embedded ac-
celerometer has a far shorter startup time and power con-
sumption [34] compared to a GPS receiver [21].

– Conservation approach: There are several different ap-
proaches to the problem of energy conservation with dif-
ferent affects on other components of the system. In some
of the approaches taken to reducing power consump-
tion, design choices are empirically explored to find sys-
tems which consume less energy. Other approaches in-
volve designing dynamic systems which adjust them-
selves based on the current situation to minimize energy
consumption without violating some quality criteria.



Table 1 Technical details of work surveyed in embedded context and activity recognition

Reference Year Sensor Modality Platform
Bouten et al. [8] 1997 Accelerometer Sensor node (proprietary)
Cakmakci et al. [9] 2002 Accelerometer SoundButton sensor sode (proprietary)
Bharatula et al. [5,4] 2005 Accelerometer, light, microphone Sensor node (Proprietary)
Krause et al. [17] 2005 Accelerometer, microphone, light, temperature eWatch wearable platform
Benbasat and Paradiso [2] 2007 Accelerometer, gyro, tilt switch Gait shoe (proprietary)
Stäger et al. [28] 2007 Microphone, accelerometer, light Sensor node (proprietary)
Thatte et al. [30] 2010 ECG, accelerometer (wireless) Smart phone, wireless sensors
Berchtold et al. [3] 2010 Accelerometer Smart phone
Raffa et al. [23] 2010 Accelerometer, gyroscope Smart phone, ContextWatch (proprietary)
Lin [18] 2010 GPS, WLAN, Bluetooth, cell Smart phone
Paek et al. [21] 2010 GPS, WLAN, Bluetooth, cell, accelerometer Smart phone
Roy et al. [25] 2011 Accelerometer, gyroscope, light, temperature SunSPOT sensor node
Sun et al. [29] 2011 ECG, accelerometer Smart phone
Lu et al. [19] 2011 Microphones (internal/external) Smart phone, sensor node (proprietary)
Gordon et al. [13] 2012 Accelerometer (wireless) Smart phone, JenniSense sensor node
Wood et al. [33] 2012 Camera, accelerometer Wearable camera (proprietary)
Au et al. [1] 2012 Accelerometer (wireless) MicroLeap wearable platform
Yan et al. [34] 2012 Accelerometer Smart phone
Gao et al. [10] 2012 Accelerometer (wireless) Smart phone, Shimmer sensor node
Wang et al. [32] 2012 Accelerometer Smart phone
Gordon et al. [11] 2012 Accelerometer, MVS [14], light, temp Sensor node (proprietary)

Table 2 Recognition approaches of work surveyed in embedded context and activity recognition

Reference Recognition
Algorithm

Conservation Approach Control Method Application Reproducible

Bouten et al. [8] Correlation analysis Low-power design None, static Energy expenditure No
Cakmakci et al. [9] Bayesian inference Low-power design None, static Basic physical activities Yes (code)
Bharatula et al. [5,4] Decision tree Low-power design None, static Office activities No
Krause et al. [17] SVM Adaptive sample rate Current activity Basic physical activities No
Benbasat and Par-
adiso [2]

CART decision tree Adaptive sample rate, hierar-
chical wake up

Activity level Wearable gait monitor-
ing, animal monitoring

No

Stäger et al. [28] C4.5 decision tree Adaptive sample rate None, static Kitchen activities No
Thatte et al. [30] SVM, Bayesian in-

ference
Adaptive sample rate Current activity Basic physical activities No

Berchtold et al. [3] Fuzzy inference Modular classifier pipeline Current activity Basic physical activities No
Raffa et al. [23] HMM Hierarchical pipeline Activity level Gesture recognition No
Lin [18] Bayesian estimation Adaptive sample rate Current location, accu-

racy requirement
Location No

Paek et al. [21] Onset detection Adaptive sample rate Location Location No
Roy et al. [25] Classifier indepen-

dent
Adaptive sample rate, sensor
selection

None, static Basic physical activities No

Sun et al. [29] Decision tree Adaptive sample rate Activity level Basic physical activities No
Lu et al. [19] Bayesian inference Hierarchical wake up Speech (activity) level Speaker identification No
Gordon et al. [13] DT, nB, kNN Data preprocessing None, static Group activities Yes (data)
Wood et al. [33] K-Means Adaptive sample rate Predicted future activities Sleep, Office, Cycling No
Au et al. [1] HMM Adaptive sensor selection Current activity Basic physical activities No
Yan et al. [34] Bayesian inference Adaptive sample rate Current activity Basic physical activities No
Gao et al. [10] nB, DT Sensor selection Current activity Basic physical activities No
Wang et al. [32] semi-Markov pro-

cess estimation
Adaptive sample rate Current activity Movement detection Partly (data)

Current Work [11] HMM, kNN Adaptive sensor selection Predicted future activities Basic physical activities Yes (Data)

– Control method: of the aforementioned conservation
approaches, several of them dynamically optimize cer-
tain parameters, e.g. sensor sample rate, sensor selec-
tion, or execution mode. In order to perform these oper-
ations, the decision process requires some type of input
in order to close the control loop. Here the type of input
used to control the conservation approach is surveyed.

– Recognition Algorithm: different algorithms are equipped
to specific degrees for certain problems, therefore posing
advantages in certain situations. Each algorithm is in it-
self a trade-off between accuracy and processing power.
Certain types can handle missing features and sensors
intrinsically such as nearest neighbors approaches and
Bayesian inference [11] while others such as neural net-

work approaches and decision trees must be specifically
adapted for such issues [3,29]. The selection of a clas-
sifier algorithm therefore provides insight into the en-
ergy/recognition trade-off conducted in the work.

– Application: which contexts or activities are recognized
greatly changes the applicability and general usefulness
of the approach. Algorithmic evaluations are also quite
specific to the application domain. It is therefore impor-
tant to note in which domain the research was conducted
in order to be able to estimate usefulness in other areas.

– Reproducibility: one of the major issues which we see
in this field is the reproducibility of results. While method-
ologies and algorithms may be well defined and formal-
ized, re-implementation is time consuming and effort in-



tensive. A system is considered reproducible if either 1)
the hardware platform is available for purchase and the
code basis is published, or 2) the data set on which the
evaluation was conducted is publicly available.

2.1 Physical Attributes

In Tab. 1 the surveyed works are listed with respect to their
technical details. As indicated there, earlier platforms were
often custom built proprietary sensor nodes specially de-
signed for the recognition operation [8,9,5,4,28], probably
due to the unavailability of standardized sensing devices.
Although some more recent research projects also incorpo-
rated some custom hardware [30,23,19,33], a trend can be
seen towards the use of mobile phones [3,21,29,34,32,10].
Combinations of devices have also been used, where mobile
phones are selected along with customized hardware for the
recognition task [30,23,19,15,10].

When observing the different sensing modalities surveyed,
it quickly becomes apparent that the accelerometer is the
most popular sensor used. This is not surprising as embed-
ded activity recognition has a large overlap with the wear-
able sensing community, where sensing motion provides great
insight [3]. Often the accelerometer was used alone [8,9,3,
34,32,1,15,10] to recognize physical activities (see Tab. 2).
Other times it was combined with other modalities to bet-
ter capture physical signals [5,4,17,2,28,30,23,25,29,11].
Accelerometers are also used to incorporate physical sens-
ing modalities into other types of recognition systems, for
example video [33] or location systems [21]. The sensors
used are dependent on the application, i.e. the activities or
contexts which were recognized, where the effectiveness of
the sensing modality is given by the influence of the activity
on that sensor.

2.2 Recognition Attributes

Early systems where exploratory in nature and investigated
the performance of recognition under constrained resources.
Here, the focus was on system design, where the hardware/-
software architecture was constructed in such a way as to
maintain low consumption using standard algorithms with
little or no adaptation at run time [8,9,5,4,28].

The effects of reducing sensor sample rate to a reduced
but constant value throughout operation with respect to en-
ergy consumption and recognition loss indicate that for cer-
tain applications it can be advantageous [17]. A further im-
provement can be achieved by adapting the sample rate of
the sensors which reduces their consumption. Adaptive sam-
pling, however, requires a control parameter to set the sam-
ple rate correctly so as not to cause deterioration in recog-
nition rates. In the surveyed work, this has been done using

using some indicator of the current system state, such as an
activity level indicator [2,29], or an actual recognized activ-
ity [17,30,21,34,32] or location [18], or a combination of
those [21]. This method is dependent on the sensor modali-
ties (see Tab. 1) with respect to the warm up times and power
consumptions for effectiveness.

A second method for reducing energy is to dynamically
select sensors to be activated or deactivated during a certain
period of time [1]. Here again, a method for selecting sen-
sors for each classification is needed, where Au et al. pro-
pose using the last recognized activity to conduct this. The-
oretically, once the sensors have been activated, there is no
reason why methods of adaptive sampling cannot be applied,
although this has not been evaluated in the work surveyed.

Another method for conserving energy is to break the
recognition process down into a hierarchical pipeline, where
each level activates higher-order processes under certain con-
ditions, thus avoiding superfluous operations if lower levels
deem them unnecessary. These methods can range from ac-
tivating the system based on activity indicators, i.e. activ-
ity level for waking up activity recognition [2,23], modular
classification systems [3], movement detection for activa-
tion of more expensive location sensors [21], or sensing the
presence of voices for speaker identification [19].

In Tab. 1, some instances employ wireless sensors which
seems to indicate a distributed approach as apposed to an
embedded one [30,15,1]. In these works the authors ob-
served the systems as being closed, i.e. the energy consump-
tion of both classification and sensor usage was investigated,
and are therefore relevant to this survey. The methods then
used for energy consumption optimization must account for
the same problems as embedded systems and therefore em-
ploy the same techniques, e.g. adaptive sample rates [30] or
sensor selection [1]. One difference is that the volume of
sensor data has a great affect on system consumption, which
can be addressed using preprocessing [12,13,10].

2.3 Summary of the Survey

To summarize the survey, when designing low-power em-
bedded recognition applications, the system should be de-
signed to reduce overall consumption by using low power
components and algorithms. Once this has been accomplished,
further savings can be achieved by making the system dy-
namic in nature to adapt to changing requirements. Here
there are 3 methods for energy conservation which have been
used. First, the sample rates of the sensors can be dynami-
cally adapted to current requirements, where reducing the
sample rate also reduces energy consumption. Second, the
designer can opt to turn off sensors entirely for a sample
period, further reducing energy consumption but risking de-
terioration of recognition values if not done correctly.
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Fig. 1 A Taxonomy for Low-Power, Embedded Activity Recognition

Third, a method for structuring recognition components
can be implemented in a hierarchical way, such that low
power components wake those with higher consumption only
when they are needed. Often times the third method benefits
from dedicated hardware components which conduct low-
power listening for activity cues. These three methods can
also be combined with each other to further improve con-
sumption rates. Each of these methods has different advan-
tages and disadvantages under different conditions and sce-
narios. Unfortunately, based on previous publications it is
not possible to make comparative statements about the en-
ergy consumption and recognition rates for these methods.

Once these design choices have been made, a method
for controlling the dynamic conservation approach can be
selected. The first method is to use a general indicator of the
activity level to control the conservation approach. An ac-
tivity indicator is especially effective when combined with a
hierarchical wake-up pipeline due to the low computational
complexity of these indicators [19]. Another method is to
use the current activity which has been recognized to adapt
the system to the requirements of recognizing that activity.
Here the risk is that since an activity must first be detected
before adaptation, the system has issues with detecting ac-
tivity transitions. This design decision structure can be rep-
resented as a taxonomy of approaches to embedded recogni-
tion which is show in Fig. 1. The static system control mode
has been deprecated to indicate that it is not the focus of this
survey and is therefore not exhaustive.

In this work, we examine a new method for controlling
the energy conserving mechanism. The method is not spe-
cific to the energy conservation approach and can be com-
bined with adaptive sampling, sensor selection, or a pipelined
activity recognition chain [15,11,33], but is evaluated here
with a sensor selection approach. Using context prediction,
a future probability distribution can be generated which al-

lows the system to be proactive in nature [26], instead of
only reacting to the current system state. Using future ac-
tivities eliminates the lag incurred by having to recognize
the current activity state or level [26] before being able to
react to it. This can improve the power consumption foot-
print and the correctness of the recognition during the lag,
or activity transition period. However, incorrect predictions
may lead to mis-configurations, a research question which
is evaluated in the rest of this work.

3 Proposed Algorithmic Approach

The standard process for activity recognition using machine
learning algorithms is straightforward. Sensors are sampled
in parallel at an arbitrary but constant rate for a period of
time. The data is then saved as a discrete multidimensional
vector, referred to as a sample window. This window is pro-
cessed using different algorithms to generate signal features,
e.g. standard deviation, average, FFT or cepstral coefficients.
Which features are used depends on the application (i.e.
which activities we want to recognize), and the type of sen-
sors being used, and are referred to all together as a feature
vector. A machine learning algorithm is given the task of
recognizing which activity was occurring during the sample
window, based on its feature vector.

We propose integrating prediction into the process to im-
prove energy consumption as demonstrated in Fig. 2. First,
activated sensors are sampled to generate a sample window.
The sample window is then processed into a feature vector,
and classified as to which activity is being performed. Based
on the classification history, future activities which are likely
to occur are predicted. An appropriate sensor configuration
is then activated to distinguish only the likely activities, and
the process repeats itself.

During the course of this research, we identified three
parameters which affect the trade off between energy and
recognition. The first is the predictability κ of the sequence
of activities, or the inherent predictability of the scenario
itself. A low value for κ indicates that prediction results
are little better than random, where a κ = 1 indicates a
100% prediction accuracy. In real world scenarios, κ simply
equates to the prediction rate for a given predictor and sce-
nario. This parameter cannot be influenced by the designer,
and can only be quantified by analyzing the scenario and
predictor beforehand. The second parameter affecting per-
formance is ρ, the number of classes which are predicted
at each time step. The more classes which are predicted, the
better the chance that the next class is actually among the
predicted classes (correct prediction), but the lower the sav-
ings will be as the system accounts for more possible activi-
ties. Therefore ρ specifies the level of risk, which allows the
designer to tip the odds towards recognition or energy as will
be seen later. The third parameter is application specific, and
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Fig. 2 The novel algorithm (\) and simulation environment (/)

is referred to as the loss parameter λ, which specifies the
amount of recognition which can be sacrificed in order to
conserve energy without breaking the application’s require-
ments. A λ value of 0 indicates that optimizations causing
any loss at all, however minimal, are not acceptable, and
λ = 1 means energy savings are of the utmost priority, and
recognition rates are of no importance.

A useful analogy at each prediction/classification step is
that of a wager. Here κ, the predictability of the scenario,
can be thought of as the probable outcome of the bet based
on previous experience (prior distribution). The number of
classes predicted, ρ, allows ρ different outcomes to be bet on
at once: the higher ρ is, the better the chances of a correct
bet, but the lower the payout in terms of energy saved. In this
case, the wager λ is a specified amount of the total recogni-
tion rate, and the payout is in energy savings. Losing a bet
(meaning a false prediction) is detrimental to classification
lowering overall recognition rates.

3.1 Weighting Sensors to Activities

Here we will present the method for selecting which sen-
sors to activate based on predicted activities. When observ-
ing the chain of events in the context classification process,
each feature in the set of features used f ∈ F is implicitly
mapped onto a single sensor in the set of sensors s ∈ S. That
sensor generates the data for this feature, producing the sur-
jective mapping a of features onto sensors a : F → S. Re-
versely, each sensor si is then “responsible” for a subset of
features F̃si ∈ F , meaning the features in F̃si are generated
over data stream from sensor si.

Mapping activity classes onto the sensors over the fea-
tures is not as simple. This mapping cannot be carried out
independent of the classifying algorithm, as each algorithm
has a different method of measuring the distance between
two vectors. For example, nearest-neighbors algorithms use
a multi-dimensional distance measurement, often euclidean
distance, between two vectors to separate them, probability-
based models calculate where a vector lies in the probabil-

ity distribution for a specific class, and decision trees of-
ten use entropy as an indicator of distance [7]. An overview
of selecting features which best suite an embedded applica-
tion is presented by Könönen et al. [16], providing a sensor
to application mapping. While these algorithms potentially
improve the quality of classification and reduce the compu-
tational load, they do not provide a mapping of features to
classes by relevance or importance. A method for generating
a sensor to class (activity) mapping by relevance or impor-
tance was proposed by Roy et al. [25], which they referred to
as quality-of-inference (QoINF). As will be discussed later,
this method is not effective for the approach and data set
presented here.

Turning sensors on and off will result in a dynamic fea-
ture vector length, and for this reason we will consider stan-
dard classifiers which can natively support this. Specifically,
nearest-neighbor classifiers are well suited to this task as
omitting a feature represents a dimensional reduction of the
labeled training vector space, and the missing features are
simply excluded from the distance calculation. Probabilistic
models are also well suited as the observational distributions
for missing variables can be marginalized when calculating
the probabilities of the hidden states. Both examples lose
only the information that would have been gained from the
missing features, but are not negatively affected further [7].

In order to generate the weighted mappingQ (the weight
is the dependency of activities on sensors), training data is
gathered for each class. Weight calculation was done by test-
ing the trained classifier against all training vectors for each
class and simulating different feature combinations. Selected
features were turned off and the dependency of each class
on those features was evaluated. The degree of dependency
is the drop in accuracy compared to the full feature vector:
a large drop in recognition indicates a high dependency, a
small drop, a low dependency.

Initially the intent was to only evaluate the weight for
each feature individually. The cost/dependency weights for a
sensor could then be calculated by summation of the weights
of its features, assuming qcfi + qcfj ≈ qcfij as indicated by
Roy et al. [25], and the cost of turning off two sensors, is
the cost of the one plus the cost of the other. This however
proved to be too inaccurate to be useful due to the condi-
tional dependence of features and sensors, making qcfi +

qcfj ≤ qcfij [16]. Therefor, Q values were calculated for
each class against all possible sensor subsets directly, in-
stead of by summing single feature or sensor values.

In order to correctly estimate the optimal sensor subset
S̃ for a sensing and classification step, the matrix Q must
be calculated only once at training time. The resulting map-
pings can be seen in Fig. 3, showing one mapping of class
c2 ∈ C onto sensors S̃1,3 ∈ S over features generated from

S̃1,3. Each mapping in b : C
Q−→ F represents one element

in the Q matrix, in this case qc2S̃1,3
∈ Q. The Q matrix
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is indexed by the power set of S without the empty set,
or S̃ ∈ ℘(S)\{}, and the classes c ∈ C, resulting in a
|C| × (2|S|− 1) matrix. The value at each point i, j indexed
by ci and S̃j is the recognition loss when classifying ci using
sensor subset S̃j compared to using all sensors S over a set
of evaluation data samples. Now, for each class ci ∈ C̃t+1

where C̃t+1 is the set of activities predicted to occur at the
next time step, a set of sensors S̃t+1 can be identified which
is optimal with respect to λ. This is accomplished by select-
ing the sensor subset S̃ for the next period t+ 1 such that it
fulfills Eq. (1).

S̃t+1 = arg min
En(S̃)

,∀c∈C̃t+1
qS̃,c ≤ λ (1)

Where En(S̃) is the combined energy consumption of all
sensors in S̃. Simply put, in order to distinguish the classes
predicted to occur C̃t+1 from each other, the sensor config-
uration S̃ is selected which saves the most energy En(S̃)

without violating the acceptable loss parameter qS̃,c ≤ λ for

any of the predicted activities c ∈ C̃t+1. This selects the sen-
sor configuration with the lowest energy consumption that
is still capable of recognizing the predicted classes with ac-
ceptable recognition rates. The next section will analyze the
use of context prediction to generate a set of classes which
are likely to appear in the next sample window (C̃t+1).

3.2 Context Prediction

Context prediction is used to estimate a subset of all con-
texts or activities C̃t+1 ∈ C which are most likely to occur
at the next time step t + 1. The cardinality of |C̃t+1| = ρ

is a parameter which can be adjusted, and allows the de-
signer to select the recognition accuracy risk against the en-
ergy reward as will be shown in Sec. 5. This approach is
independent of the algorithm or abstraction level used for
prediction. Important is only the quantification of the pre-
dictability parameter κ which is simply an indicator of how

well the predictor is able to forecast the given scenario (pre-
dictor accuracy). The results presented here should therefore
still apply for all scenarios and prediction algorithms.

As indicated by Fig. 2, high-level context information at
the activity or context abstraction level is used for predic-
tion. Using low-level, sensory or feature data is also an op-
tion, but high-level prediction reduces complexity in terms
of training and execution [26]. The algorithm used for pre-
diction is a first-order Markov chain consisting of states c ∈
C. At each time step, the probability P (ci,t+1|ct) for each
ci ∈ C is calculated, and the ρ states with the highest prob-
abilities are output as predictions.

4 Implementation and Simulation

This section presents the algorithmic implementation and
the simulation environment. Both were programmed using
the Python programming language.

4.1 Simulation Environment

The main concept is to leverage the predictability of human
actions in order to conserve a large amount of energy while
only sacrificing a small amount of recognition capabilities.
The simulation environment was designed to evaluate the
method for various degrees of predictability κ. Two pub-
lished data sets which are publicly available where used in
this evaluation.

The data sets where selected because both of them are
publicly available sets of numerical data gathered from wear-
able sensing modalities, making the results presented here
easier to reproduce. The MVS data set contains a relatively
large number of activities, but relatively few sensor modal-
ities. The OPP data set contains relatively few locomotion
activities, but with a large number of sensing modalities and
locations. The goal was to select data sets which comple-
ment each other so as to demonstrate different performance
aspects of the proposed approach under different conditions.

Micro-Vibration Sensor Data Set (MVS): The first data set
used for evaluation [14] contains 142 minutes of data from
4 sensors (see Tab. 3), sampled from 5 subjects performing
8 activities (taking a bus, riding a bike, walking, jogging,
taking the elevator, typing at a desk, going up/down stairs,
and standing).

The OPPORTUNITY Data Set (OPP): The second data set
used for the evaluation [24] contains information from 72
sensors over 12 subjects, yielding 25 hours of data. In order
to reduce complexity of the simulation a subset of the sen-
sors was used. The sensors used where the following: accel-
eration on the hip, right knee, back, right hand and left hand;



Table 3 Energy Consumption Rates for the Simulated Hardware Components

Element Dimensions Energy Cost (mW) Data Set
Function Name Online Offline MVS [14] OPP [24]
Light APDS-9003 1 8.25 0.0

√

Temperature TC1047 1 0.1155 0.0
√

Vibration MVS 0608.02 1 0.0015 0.0
√

Microprocessor PIC18LF14K 1 0.0512 0.0
√ √

Acceleration ADXL335 3 1.4 0.0
√ √

Magnetic Field HMC 5883L 3 0.33 0.0066
√

Gyroscope ITG-3200 3 21.45 0.0165
√

gyroscope and magnetic field sensors on the back. The data
set contains a myriad of labels, including locomotion modes,
object interactions, interaction types, and which hand was
used. For this evaluation the locomotion mode labels where
used, consisting of 4 activities (walk, stand, lie and sit). The
system was simulated as a single device connected to all sen-
sors. While the capability of an embedded processor to han-
dle this number of input streams or data is questionable, this
does not affect the results of the evaluation as the proces-
sor is modeled as being always on with constant consump-
tion. The energy consumption values where taken from a
standard microprocessor and sensors, identical to that of the
MVS data set (see Tab. 3). Actual device specifications and
consumption values are not included in the OPP data set.

Both data sets where evaluated using the same prepro-
cessing framework. The system simulates real time through
a replay mechanism using the recorded data. The respective
data set is cut up into one second windows without overlap,
over which features are generated. The resulting feature vec-
tors are then fed to the novel algorithms as if they were being
generated in real time. The sensor configurations are simu-
lated, where for a specific sensor configuration S̃, the fea-
tures F̃S̃ are present in the feature vector and all others are
omitted. Once a sensor configuration S̃ has been selected,
the features F̃S̃ are calculated. Per sensor, the following fea-
tures are calculated [14]: average, standard deviation, area
under the curve, min-max difference, Shannon entropy, and
FFT peak.

The energy consumed by the device En(S̃) is recorded
for the time step. The total consumption consists of the con-
sumption of each sensor, as well as the energy consumption
of the microprocessor during the course of the sample win-
dow, or one second. The energy model is simplistic, ramp-
up and ramp-down times/consumptions of the sensors are
not modeled, and the processor consumption is modeled as
being constant regardless of load. This approximation does
not account for the added load of prediction, but the method
used here has a computational complexity of only O (|C|)
[15]. The energy consumption rates for each device sim-
ulated can be found in Tab. 3. At each time step, a new
S̃t is provided by the algorithm, which results in a differ-
ent feature vector consisting of features F̃S̃ , and a different

energy cost. The amount of energy consumed can then be
compared with the amount consumed for the reference case
when S̃ = S, i.e. when all sensors remain on, for compari-
son.

As with energy consumption, the simulation environ-
ment also records classification results, both for the novel
algorithm and for the reference case. For each time step, the
algorithm classifies F̃S̃ and the result of the classification is
recorded, along with the energy consumption. At the same
time, the complete feature vector FS , consisting of the en-
tire feature set F is also classified and the result is stored
for comparison with the reference system. In total, the sim-
ulator records the energy consumption and classification re-
sults for both the novel prediction-based activity recognition
algorithm, as well as the reference case when all sensors re-
main on for both data sets.

4.2 Artificial Data Set Generation

In order to evaluate the behavior of the system for different
degrees of predictability (κ), artificial data sets are gener-
ated using the original data set and a generative probabilis-
tic model shown in Fig. 4. The goal is to generate a data
set which is predictable to a specified degree by the pre-
dicting algorithm, meaning that it results in a certain pre-
diction accuracy. A Markov chain assumes that the process
being modeled holds with the Markov property. It follows
that by changing how pronounced the Markov property is
in the data, the accuracy of the predictor can be set. The
predictability is defined as κ ∈ [ 1

|C| , 1] where a value of 1
indicates that

∀i∃j|P (ct+1 = cj |ct = ci) = 1

and a value of 1
|C| indicates that

∀i, j|P (ct+1 = cj |ct = ci) =
1

|C|

or that all transitions are equally likely. Setting κ = 1
|C|

is the lower bound for predictability, as there are |C| tran-
sitions leaving each state, and the probabilities of all exit
transitions sum to one. Assigning κ a lower value than this



means at least one exit transition must have a probability
higher than 1

|C| , increasing predictability.
Using κ, we can generate a HMM (not to be confused

with the HMM used for recognition) by ordering states such
that each state has 1 and only transition to a different state
with probability κ, and only 1 transition from a different
state to itself with probability κ. All other transitions have
probability κ̄ = 1−κ

|C|−1 . Simply put, as κ approaches 1, the
state following the current state becomes more and more cer-
tain, and therefore easier to predict. As κ approaches the
lower bound of κ = 1

|C| , the next state becomes more ran-
dom, and harder to predict.

Once this model is created, traversing it generates emis-
sions which are sample windows from the original data set
for the given activity. This is demonstrated in Fig. 4 for an
example 3-class dataset. Although this artificial data set does
not represent a realistic pattern of the human activities in the
data set, it does create a data set which is predictable to a
specified degree. As will be shown later, the results are only
dependent on the prediction accuracy, meaning that for re-
alistic scenarios with identical prediction rates, the results
should theoretically still hold.

4.3 Experimental Process

The algorithm presented here is not application specific. It
is meant to reduce the cost of embedded activity and con-
text recognition in scenarios with repetitive temporal pat-
terns. Each application is different in terms of the optimal
trade off between energy consumption and accuracy [28].
The following evaluation is conducted without a specific
cost model, but allows the reader to evaluate the effective-
ness for their application scenario at hand.

The classifiers used are the Hidden Markov Model [22]
(HMM), and the k-Nearest-Neighbors (kNN) [7] algorithms,
as they are both easily adapted to a variable feature vector
length. The algorithm requires two separate sets of training
data, one to train the classifier and predictor, and a separate
one to populate the Q matrix using the trained classifier. A
third data set is required for evaluation.

Training Phase Each artificial data set is partitioned into 3
sections. The data used to train the classifier and predictor
D̃Train makes up 60% of the original data set D. Another
20% D̃Q is used to calculate the Q matrix, as using D̃Train

for this purpose results in overfitting, and therefore distorted
loss values in Q. Finally, the last 20% D̃Eval is used to eval-
uate the performance of the whole system, and in this exper-
iment contains 3595 sample windows in total.

In the first step, D̃Train is used to train the classifier, ei-
ther HMM or kNN, as well as the Markov chain used for pre-
diction. In this phase sensor selection is not conducted and

c1

c2

c3

κ

κ̄
κ̄

κ̄
κ

κ̄

κ

κ̄

κ̄

ec1

ec2

ec3

Fig. 4 Generative model for constructing an artificial data set with 3
classes (C), emissions (E) and predictability κ

both of the classifier instances and the predictor are trained
on all features f ∈ F . In the second training step, D̃Q is
used to populate the Q matrix by evaluating the recognition
rate of every class ci with every permutation of S̃. There-
fore, every combination in C × ℘(S)\{} is evaluated in a
separate classification phase, using all vectors for activities
of the current subset.

Testing Phase In the testing or evaluation phase, the classi-
fier algorithms are run on D̃Eval in parallel. At each clas-
sification time step, the S̃t resulting from the previous time
step is used to generate a new feature vector F̃t. This vector
is then classified, either by the HMM or kNN classification
algorithm. Based on this classification, the algorithm pre-
dicts ρ probable classes C̃t+1 for the next time step. Next,
the sensor subset S̃t+1 is selected such that it fulfills Eq. (1).
At the end of each step the simulation environment records
the classification result using F , F̃t, the ground truth for that
sample window, the sensor subset S̃, the energy consumed
En(S̃t) and the predictions C̃t+1 for the next time step.

5 Evaluation

The evaluation presented here covers several months of sim-
ulation time. For each different degree of scenario predictabil-
ity κ (MVS: from 0.125 to 0.875 step 0.125, OPP: from 0.25
to 0.875 step 0.125), a different artificial data set was gener-
ated. The number of predicted states ρ (MVS: from 1 to 8
step 1, OPP: from 1 to 4 step 1), the acceptable loss param-
eter λ (from 0 to 1 step 0.1) and the classifier (MVS: HMM
and kNN, OPP: kNN) were permuted to evaluate the output
parameters over each data set. The OPP data set was only
evaluated using the one kNN classifier to maintain brevity,
and as it suffices to validate the conclusions drawn from the
MVS results. These results are multi-dimensional, consist-
ing of dimensions ρ, λ and κ, the classifier, data set, recogni-
tion rates and energy consumption. It is impossible to impart
this information in its entirety here, therefor we will detail
and demonstrate major insights with graphical excerpts.
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Fig. 5 Recognition loss and energy savings for the MVS Data Set
and the HMM (a) and kNN (b), κ=0.125
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Fig. 6 Recognition loss and energy savings for the MVS Data Set
and the HMM (a) and kNN (b), κ=0.875
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Fig. 7 Recognition loss and energy savings for the MVS Data Set
and the HMM (a) and kNN (b), ρ=4
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Fig. 8 Recognition loss and energy savings for the MVS Data Set
and the HMM (a) and kNN (b), κ=0.125

5.1 Results of the MVS Data Set

5.1.1 MVS: Recognition Loss

We define recognition loss as the difference in percentage
points (pp) between the reference recognition rate (in per-
cent) with all sensors on, and the recognition rate for the
novel algorithm for a given set of parameters. For a given
loss parameter λ, loss of recognition decreases monoton-
ically (meaning recognition increases) for an increasing ρ
(number of states predicted). For the MVS data set, this is
demonstrated by Fig. 5 for a κ of 0.125, and again in Fig.
6 for a κ of 0.875 for both the HMM and kNN classifiers.
This is again evident in Fig. 8, where for a given λ, increas-
ing ρ either reduces or leaves recognition loss unchanged.
In other words, for a specific number of classes predicted at
each step (ρ), if the parameter λ which identifies how much
loss is acceptable for a specific application is increased, the
loss in recognition does indeed increase.

The same also applies to the acceptable loss λ, where
for a given classifier and ρ, loss in recognition and energy

savings increase monotonically with λ. The implication is
that the acceptable loss parameter λ does indeed function
as an indicator for how much loss can be sacrificed as pro-
posed. The monotonic behavior of recognition loss implies
that for a given predictability κ, the lowest recognition loss
(best recognition) is obtained by ρ = |C| and λ = 0, and the
highest loss (worst recognition) when ρ = 1 and λ = 1.

Observing accuracy loss over κ for fixed values of λ and
ρ is not as clear cut. In Fig. 7, varying κ affects recognition
for ρ = 4 using the HMM, where the trend in recognition
loss is decreasing as κ increases, although not monotoni-
cally (compare κ = 0.125 with κ = 0.875 for λ = 0.8).
For the kNN classifier, the effects of κ are minimal when
compared to the HMM as seen in Figs. 5 and 8.

5.1.2 MVS: Energy Consumption Rates

The energy savings is defined as the relative decrease in en-
ergy consumed over the evaluation of D̃Eval between the
reference classifier with all sensors on and the novel algo-
rithm. When observing Fig. 5 and Fig. 6, the acceptable loss



parameter λ has a far greater influence on energy savings
than either ρ or κ. Fig. 7 and Fig. 8 demonstrate this by
showing very little differentiation in energy savings for ei-
ther κ or ρ respectively. In all cases, a relatively small values
of λ (≈ 0.1) suffice for large energy savings (>80%).

All of the images displaying the results clearly show
a rapid increase in energy savings for even small accept-
able loss values. This increase is caused by the light sensor,
which consumes an order of magnitude more energy than
the vibration sensor for example (see Tab. 3). The upper
bound for energy savings, as well as for recognition loss, is
given by using the cheapest sensor only, namely the MVS vi-
bration sensor [14]. The light sensor is the first to be shut off,
creating the steep climb over low values of λ seen clearly in
Figs. 5 and 6. Another slight increase can be seen around
λ = 0.5 corresponding to the acceleration sensor. Shutting
off this sensor however, causes large increases in recognition
loss. In other words, the algorithm filters out those sensors
first which contribute little, but cost a lot.

5.1.3 MVS: Classifier Comparison

The kNN classifier performance for the reference case (all
sensors on) remained stable across κ with recognition rates
between 79.6 - 80.1%. On the other hand, reference recog-
nition rates for the HMM varied in performance from 70.5%
for κ = 0.125 to 81.6% for κ = 0.875, indicating that the
recognition rates of the HMM are quite dependent on the
predictability of the scenario. This can be seen again in Fig.
7, where recognition losses vary little for all values of κ for
the kNN classifier, but are further spread out for the HMM
classifier. However, the recognition loss for the HMM is
consistently higher than for the kNN classifier for the same
parameters. This can be seen when comparing the top left
and bottom left images in Figs. 5 and 6.

On the other hand, the kNN classifier appears to be con-
sistently better at conserving energy than the HMM classi-
fier, as seen in Fig. 8 when comparing energy savings of the
HMM and kNN classifiers for λ = 0.1 or λ = 0.6 for ex-
ample. Fig. 6 demonstrates that this is also evident for other
values of κ. Both Fig. 5 and Fig. 6 indicate that the energy
consumption of the kNN classifier is also less for higher val-
ues of ρ, staying constant where the HMM energy savings
fall off. Fig. 9 confirms this (noisily) by indicating higher
savings for the kNN classifier compared to the HMM, and
less variance over κ for higher values of ρ.

5.1.4 MVS: Prediction Rates

One potential issue which was mentioned earlier is that in-
correct predictions can lead to incorrect sensor configura-
tions and incorrect classifications. The apparent problem is
that this can then again lead to another incorrect prediction,
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Fig. 9 Recognition loss and energy savings for the MVS Data Set and
the HMM (a) and kNN (b), λ=0.8

fueling the cycle. To evaluate the effects of this phenomena,
the prediction rates of the system where also evaluated with
respect to κ, ρ and λ.

Fig. 10 shows the prediction accuracy with respect to ρ
and λ for the a) HMM and b) kNN classifiers with a pre-
dictability of κ=0.125. On the left hand side, the prediction
accuracy with respect to the ground truth is shown, while on
the right the accuracy with respect to system classifications
is displayed. The latter indicates the correctness of predic-
tion as seen from the subjective point of view of the algo-
rithm’s own classifications. When observing these graphs,
the first thing which is clear is that the prediction accuracy
is heavily dependent on ρ, or the number of states predicted.
The linear relation between ρ and prediction accuracy is to
be expected. For λ = 0, the ratio of correct to incorrect pre-
dictions should range from κ for ρ = 1, to 1 for ρ = |C|,
where since all classes are predicted, the prediction is al-
ways correct. This is evident in Fig. 10, where the deviance
in prediction accuracy with respect to the expected value of
κ is due to misclassification. For comparison, Fig. 10 dis-
plays the same information for κ = 0.875, where the lin-
ear behavior is still evident but with an increased offset for
λ = 0. Theoretically, this offset should be proportional to κ,
or 87.5, where the difference is due to recognition errors.

For lower values of κ, the acceptable loss parameter λ
has little effect on the accuracy of the prediction algorithm.
This is due to the fact that as κ approaches 1

|C| , predictions
approach random, therefore errors caused by increasing loss
in recognition do not affect the randomness of the predic-
tion. As κ increases, the effects of λ also increase, as can be
seen when comparing the left column of Fig. 10 with the left
column of Fig. 11. Furthermore, these effects are stronger
for the kNN classifier as opposed to the HMM classifier, as
the later has an internal Markov chain which stabilizes the
prediction.
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Fig. 10 Prediction against Ground Truth and Classification for the
MVS Data Set and the HMM (a) and kNN (b), κ=0.125
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Fig. 11 Prediction against Ground Truth and Classification for the
MVS Data Set and the HMM (a) and kNN (b), κ=0.875

When comparing the left columns of Figs. 10 and 11
with their respective right columns, it is evident that the sys-
tem’s subjective evaluation in terms of its own prediction
performance is fairly accurate with respect to its actual per-
formance evaluated against ground truth. Only for for high
values of λ is there a noticeable discrepancy, where the dis-
crepancy increases as the predictability κ increases.

5.2 Results of the OPP Data Set

The activity recognition data set from the OPPORTUNITY
project [24] was also evaluated using the prediction based
method to confirm initial results from the MVS data set [11].
For this purpose the results of the kNN classifier alone are
sufficient, and therefore the HMM results have been omitted
for brevity.

5.2.1 OPP: Recognition Loss

The behavior of the recognition loss for the OPP data set
with a predictability of κ = 0.25 is displayed in Fig. 12.
Remember, for this data set, this value indicates random or-
dering as there are only 4 activity classes, as opposed to
8 classes in the MVS data set. Here, a plateau in recogni-
tion loss can be clearly seen at 12.2 pp for all values of the
loss parameter λ ≥ 0.2. This same plateau can be seen for
κ = 0.875 in Fig. 13 as well.

This plateau behavior is generated by the cheapest sen-
sor in terms of energy cost, in this case the magnetic field
sensor (see Tab. 3). As opposed to the MVS data set, this
sensor alone provides relatively high accuracy, indicating
that increasing λ quickly leads the system to select that sen-
sor alone as the lowest energy sensor configuration for achiev-
ing the required recognition.

5.2.2 OPP: Energy Savings

Similar to recognition loss, energy savings also plateaus at
94.8% for values of λ ≥ 0.2, which is also the optimum for
energy savings. This can be seen for both κ = 0.25 in Fig.
12, and for κ = 0.875 in Fig. 13. Again, this is caused by
the loss parameter quickly dropping below the rates achiev-
able using the single cheapest sensor, yielding an optimal
configuration of only that sensor.

5.2.3 OPP: Prediction Rates

Fig. 14 displays the prediction rates for the OPP data set
with a kNN classifier against ground truth (left) and system
classifications (right) for κ = 0.25. This is the case where
the distribution is random for future activities, where all 4
activities are equally likely. For ρ = 1, prediction is steady
at approximately 38%, above the expected 25% given by
the generated data set. This is caused by recognition error
which may have a different predictability inside of a single
class due to the generation process.

The same information is presented in Fig. 15 for κ =

0.875. For ρ = 1, prediction values begin at around 78%
for λ = 0, but drop off to around 68% once the sensor set
is reduced to the gyroscope alone for values of λ ≥ 0.2.
Again, the values increase linearly from that point to 100%
as ρ increases towards the maximum value of 4.

In both Fig. 14 and Fig. 15 it can be seen that the subjec-
tive evaluation of the prediction value for the system is fairly
accurate. Here, an increased effect for lower values of λ can
be seen, as well as a reduction in prediction values. This re-
duction is around 10 to 15 pp for ρ = 1 and κ = 0.875,
which falls off to 0 for ρ = |C|. Intuitively, this can be in-
terpreted as the system correctly predicting the next activity,
but judging this as a false positive due to misclassification.
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Fig. 12 Recognition loss and energy savings for the OPP Data Set
and kNN with κ=0.025
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Fig. 13 Recognition loss and energy savings for the OPP Data Set
and kNN with κ=0.875
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Fig. 14 Prediction against Ground Truth and Classification for the
OPP Data Set and kNN classifier with κ=0.25
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Fig. 15 Prediction against Ground Truth and Classification for the
OPP Data Set and kNN classifier with κ=0.875

6 Discussion and Insight

In Figs. 5 and 6, non-zero energy savings are present, even
when λ = 0. Intuitively, setting λ = 0 means that any loss
in recognition is unacceptable. For certain classes, some sen-
sors are so insignificant that shutting them off results in an
error increase so small that it is approximated to 0. Here the
expensive light sensor is useless for most classes, and can be
shut off with no loss as long as none of the classes requiring
it is predicted. As more states are predicted however, classes
requiring that sensor are more frequently predicted, regard-
less of their occurrence rate, increasing consumption with
no effect on recognition.

The situation when ρ = 1 is extremely volatile, since
only the single most likely future class is predicted. Fig.
5 and Fig. 6 show that ρ = 1 has significant negative ef-
fects for all non-zero values of λ. False classifications result
in false predictions, resulting in false classification again.
Introducing a confidence value at this point may allow the
system to recognize error occurrence and correct by switch-
ing sensors back on when confidence or probabilities for all
classes are low. The low recognition rates for ρ = 1 indi-
cate that for all real scenarios ρ = 1 should probably not be
considered. For higher values of κ such as 0.875 in Fig. 6,
predicting as few as two states at each step can be sufficient.

The kNN classifier was more resistant to noise with re-
spect to predictability within the data set. As κ decreases,
Fig. 7 indicates that for a fixed loss parameter λ, the recog-
nition loss expands faster for the HMM than for the kNN. In
Fig. 9, the energy consumption for a fixed ρ grows faster
and becomes more erratic for the HMM when compared
to the kNN. The HMM algorithm models the activities as
a Markov process [22], meaning that unpredictable feature
vectors not only affect prediction, but classification as well.

The kNN algorithm is only affected by κ through incorrect
sensor activations which reduce recognition.

Both classification algorithms are influenced by lower
values of κ due to sub-optimal sensor activations. The effect
can be counteracted by increasing the number of classes pre-
dicted ρ, improving recognition accuracy but reducing the
gain in energy. The parameter ρ controls the balance be-
tween risk and reward. High values of ρ mean less risk but a
smaller payoff, and lower values increase the win in energy
at the cost of recognition. The predictability of a scenario
can be easily obtained for real scenarios by taking the accu-
racy of the prediction algorithm over the training data. Once
κ is known, ρ can be configured to counteract it and select
an appropriate risk level using Fig. 9 as a heuristic.

Once the risk and reward trade off between ρ and κ has
been found, the loss parameter λ can be assigned to opti-
mize the amount by which recognition may be reduced, and
thereby the amount of energy which is conserved. For ex-
ample, assuming a κ value of 0.5, ρ = 3 to counteract and
a loss parameter of λ = 0.2, a HMM incurs a loss of less
than 1.2 pp in recognition but saves up to 84.11% of energy
consumed without optimization.

One caveat is that due to the nature of prediction-based
optimization, the system may perform badly for recognition
of important but rare and unpredictable events or activities.
This will arise if those activities require special sensors to
distinguish them from other activities. Since the events can-
not be easily predicted, the important sensors will not be
correctly activated. A possible solution to this could be to
exclude the required sensors from the set of sensors which
can be deactivated, leaving them on at all times. Also one
could use expert knowledge to hard-code the circumstances
under which the events occur into the system if possible. If
some activities are more important than others in general,
investigating the integration of activity importance weights



into the the activity-sensor weights in the Q matrix could
provide an interesting avenue of research.

Another interesting aspect which has not been addressed
here, is that often times the sensors of the mobile device
are also used for purposes other than activity recognition
alone, such as is the case with mobile phones. Under these
circumstances, it is not advisable to switch these sensors off
using an algorithm which does not take user preferences into
account. In theory, the algorithm could be easily adapted to
account for sensors which are in use by a user application
S̃app. At each prediction step, Eq. (1) can be adapted to only
search the Q matrix for sensor configurations which are a
superset of S̃app. In this way the optimal sensor subset can
be selected given that the subset S̃app is activated.

Here we have evaluated the performance of the algo-
rithm for a specified and fixed λ during runtime. Practically
speaking, there is no reason why the acceptable loss cannot
be changed dynamically during operation. This could have
advantages for applications with mobile phones, where re-
quirements on the energy source are also dynamic in nature.
For example, when the phone is connected to a power sup-
ply, λ can be set to 0 as the power source is effectively un-
limited. However as the battery level approaches a critical
level, λ can be increased to extend the battery life as long as
possible. Alternatively, devices could also try and recognize
patterns in the daily lives of users [31], and set λ to appro-
priately account for the time until the device will probably
be recharged.

One issue which has not been addressed is that although
λ is proportional to how much recognition will be sacrificed,
it does not provide an exact amount. The actual loss is a
function of λ, the predictability κ, the number of predicted
class ρ, and the number of total classes |C|, as well as the
reference recognition rate when all sensors are on. The im-
plication is that at training time, actual losses in recognition
are unknown, as these are not only dependent on system pa-
rameters but also on the reference recognition rate for the
given activities. One solution is that when gathering training
data a small amount can be set aside for parameter tuning
before the system is put online.

7 Conclusion

We proposed a novel method for saving energy while recog-
nizing human activities using embedded and wearable sens-
ing systems. We conducted a survey of existing techniques
which revealed a taxonomy of approaches to this problem.
Based on that taxonomy, we introduced the novel method
for sensor system control which uses prediction to further
conserve energy. Human beings are repetitive and periodic
creatures, therefore what we do can be predicted to a cer-
tain extent. Sensors which are not needed to decipher prob-

able activities from each other can be turned off, conserving
energy without greatly impacting recognition rates. The al-
gorithms are simulated using preexisting data sets [14,24],
which are used to generate artificial scenarios with specific
degrees of predictability. The standard classification (Hid-
den Markov Model and k-Nearest Neighbors) and predic-
tion (Markov Chain) algorithms where used for the evalu-
ation so as to make the effects of the novel methods more
pronounced.

The results indicate that for highly predictable scenar-
ios, significant savings are possible with little loss in recog-
nition. For less predictable scenarios losses are higher, but
the predictability can be artificially increased by predict-
ing more than one state per iteration. This however reduces
the savings in energy achievable, but limits the loss due to
missed predictions. The Hidden Markov Model which takes
state transitions into account performed better the kNN which
does not, although low predictability has a greater effect on
recognition. Finally, energy savings and recognition loss are
greatly dependent on the activities being recognized and the
sensors being used. The limit is given by the recognition
rate using only the cheapest sensor with respect to energy
consumption, and the recognition and energy consumption
converge to the values given by using only that sensor as the
system is granted increasing freedom to optimize at the cost
of recognition.

Although this evaluation yielded positive results, there
are still some drawbacks to this approach. Applications which
attempt to recognize important but unusual events could suf-
fer greatly. This could come about if the important events
require special sensors but their occurrence cannot be pre-
dicted, where the prediction error would lead to those sen-
sors not being activated in the time of need. Counteract-
ing this effect requires further research where several ap-
proaches have been proposed.

The results are also independent of the specific recog-
nition and prediction algorithms used, depending only on
the prediction and recognition rates achieved. The simula-
tion results can therefore be applied to a new scenario once
the predictability (prediction accuracy) has been found. Al-
though the acceptable loss parameter does indeed control
how much loss is incurred, the function for this dependence
is not straight forward and some training data should be used
for parameter fitting. In this way the system designer can en-
sure that the actual loss in recognition incurred meets appli-
cation requirements. For a scenario with predictability of 0.5
and 3 classes predicted at each time step, a loss parameter of
0.2 with the kNN classifier would incur a recognition loss of
less than 1.5 pp but save 84.8% of energy consumed for the
MVS data set and 2.8 pp and 89.9 % for the OPP data set.

An avenue of further research would be to integrate a re-
liability measure into the classification and prediction pro-
cesses. Using such a method could allow the system to iden-



tify system configurations which do not allow reliable clas-
sification of activities, i.e. when necessary sensors are not
active due to incorrect prediction, and take necessary mea-
sures. Another open research question is how the system
would perform using low-level prediction based on the sen-
sor data streams as opposed to an activity history. This would
further decouple the performance of the recognition and pre-
diction processes, and could prevent the negative feedback
loop between incorrect classifications and predictions which
occurred in some extreme situations. Finally, although the
experiment was carefully designed to simulate real condi-
tions, the work presented here would benefit from online ex-
periments, e.g. with a mobile phone, to verify these results in
live scenarios. Currently, we are planning a semi-supervised
approach to evaluating the algorithm under real conditions,
as this has proven effective with other approaches to con-
serving energy for embedded recognition [34].
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