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What is Group Activity Recognition? -\-\J(IT

® Human / Single-user (HAR)
® Track activities of a single user over period of time

& Multi-user (MUAR)

B Tracking activities of several users in parallel
® Solo, cooperative, conflicting activities

B Group (GAR)

® Group Is an abstract entity: organism

® Emergent behavior based on activities and
Interactions of individuals: flocking

® GAR is estimation of group behavior classes:

® Analogous to HAR with multiple sensing
modalities/locations, but interactions complex
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Thesis ﬂ(".
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® Devices of group members can collaborate to
estimate group behavior being generated

® Recognition in mobile sensing network solves
Infrastructure issues

Application Examples: " .
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Research Questions AT

Karlsruhe Institute of Technology

® Problems
® Distributed execution — reducing communication/processing
® Observing identity — not just what...but from whom?

® Dynamic membership — people come and go
Group Behavioral Classifier
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Before We Start - Abstraction Level?
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® How high up the context/activity data
processing chain should distributed
fusion to group activity be carried out?

® Explored using distributed sensing

system

® Using distributed features provides high

accuracy
® Clustering data is

® Using local activity
iInformation presents
several Issues

B Status: complete v Features
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Data
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Acc. F-meas.

Clusters

Activities

0.962 0.962
0.762 0.764

0.507 _0.524
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Distributed Classification — Probabilistic Appr. ﬁ(IT

Distributed probabilistic inference (DPI) using belief propagation (BP)
® Evaluated for distributed sensor calibration

Usefulness for GAR will be evaluated
® Human factor: human interaction more complex than sensors

How DPI-BP works
® 1) Estimate group activity based on local sensors
® 2) Exchange estimation with neighbors
® 3) Re-estimate using local sensors + neighbor estimations
® 4)repeat from 2
Converges to “correct” answer
single-user, multiple sensor location experiments: in progress

Multiple-user, single sensor location (iPhone):
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Dynamic Membership — using Role -\-“(IT

® Problem: people come and go, each individual affects
group behavior differently

B Experience (prior) learned for one individual may not fit the
next one

® Solution, factorize prior using social role of individual

® Role: characterization of behaving similarly w.r.t. to the
group activity

® Assumption: priors transferrable within role

® Requires expert knowledge of roles a priori

® People may change roles (out of scope)
B Evaluation:
® Simulate replacement of subjects in a group data set
® Exchanging subjects of same role vs. random
& Crunch zone!
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® Role can be seen as user's bias to a group activity

® Extracting a user's role
B If the group activity is known: infer role
® Over time, estimations of social role of members improves,
converging.
® Using role to improve GAR
B If role is known: infer activity
® Knowing a member’s bias improves inference of correct
group activity
® Evaluation:
® Role recognition using human flocking behavior data set
B Roles: leader and followers in a flock

® Planned time line: Sep. through Nov. 2012 at IfE / WCL (Dr.
Roggen) ETH
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Conclusion .\\J(IT
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® GAR presents a novel problem
® Similar to HAR: but complex interactions between members

® Similar to MUAR: distributed sensing but total is more than
sum of individuals

® Complexity of and
pose Issues

B DPI+BP Is a promising distributed approach
® Roles can solve dynamic group membership issues

® Expected result: DPI+BP with prior factorized over roles
provides generalizable solution for GAR

10 08.12.2011  Dawud Gordon _i. Technology for
I Pervasive Computing



