

Energy-Efficient Activity Recognition using Prediction

ISWC 2012 – Newcastle, England Dawud Gordon, Jürgen Czerny, Takashi Miyaki, Michael Beigl Karlsruhe Institute of Technology (KIT), TecO

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

What happens as the number of devices increases?

Use Prediction to Save Energy

Context prediction: forecast future contexts!

- Classify activity
- Predict probable future activities
- Identify sensor subset for differentiation
- Activate sensor set
- Repeat
- Save energy!!

Classification		
Features	Features	Features
Feature Generation		
Sensor Data	Sensor Data	Sensor Data
Sensor Sampling		

What is there to research?!

- How to select sensors for to be turned off?
 How much information is delivered to
- How many classes to predict (p)?
 1 class prediction?
 All class prediction?
- And what is the acceptable cost (λ) ?
- How does performance depend on scenario?
 How predictable is the subject (k)?

System Description

- Activity recognition algorithms
 K-Nearest Neighbors
 - Hidden Markov Model
- Prediction algorithm
 - Markov chain
- Method for mapping activities to sensors
 - Selecting S without violating λ

Activity Recognition Data Set

- 5 Subjects
 8 Activities
 60 Hz sampli
- 60 Hz sampling
 - Vibration
 - Acceleration
 - Light
 - Temperature
- 142 Minutes of data
 Dataset available at: www.teco.kit.edu/ ~gordon/MVS/

Gordon et al. A Novel Micro-Vibration Sensor for Activity Recognition: Potential and Limitations, ISWC'10

Simulation Environment

- Generate synthetic data sets using generative model (HMM)
 - Vary predictability (k) (0.125:0.875 step 0.125)
 - Train: 2/5 train, 1/5 test, 2/5 eval
- Simulate performance
 - Loss parameter (λ) (0:100 step 10)
 - Predicted states (p) (1:8 step 1)

Evaluate

- Evaluate base case (ALL ON)
- Classifier accuracy (loss)
- Energy consumption (savings)

Technology for

Pervasive Computing

Technology for

Pervasive Computing

Multi-dimensional results matrix!

 [κ, λ, ρ, classifier]
 A matrix for acc., prec., rec., f-meas., energy
 Confusion matrix 2 more dimensions!

 This work:

 Accuracy (loss) and energy (savings)

Technology for

Pervasive Computing

- Defines amount of recognition to trade for energy
- Like a wager!
- Monotonic increase in for fixed ρ , κ
 - Loss of recognition
 - Energy savings

Technology for

Pervasive Computing

- Defines amount of risk!
- High risk high payout
- Monotonic decrease in for fixed λ , κ
 - Loss of recognition
 - Energy savings

Effects of Predictability ĸ

12 22.06.2012 Dawud Gordon

Technology for Pervasive Computing

Novel approach using prediction

Saves energy, e.g. 84% for 1.2pp

Results heavily dependent on

- Sensors used
- Activities recognized
- Predictability of scenario

Tools for tuning desired trade-off supplied!

- K can be obtained with predictor and scenario
- λ taken from the application
- p adjusted to find the desired give and take

Thank you and Questions!

So much more data! Effects of sensor control on prediction OPPORTUNITY data set HELP: Special Issue CfP?!?

