

Recognition of Group Activities using Wearable Sensors

8th International Conference on Mobile and Ubiquitous Systems (MobiQuitous'11) Dawud Gordon, Jan-Hendrik Hanne, Martin Berchtold, Takashi Miyaki and Michael Beigl Karlsruhe Institute of Technology (KIT), TecO; TU Braunschweig, AGT Germany

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Overview

In-network GAR using Wearable Sensors

- What is GAR?
 - Why is it important?
 - How can it be done?
 - What is the correct approach?

- Experiment in GAR
 - Different modes evaluated
 - Context abstraction levels
 - Evaluated in terms of power consumption and recognition

- System for GAR
 - Sensor nodes
 - Mobile phones
 - In-network processing

- Results
 - Features optimal abstraction level
 - Using HAR as input for GAR creates problems
 - Clustering promising

GAR using Mobile P2P Devices

Devices collaborate to recognize group activity using embedded sensors

- Group (swarm) behavior studied in the natural kingdom: ants, fish, birds, bees, etc.
- Swarm behavior is emergent behavior resulting from behavior of individuals and interactions between them [Reynolds 1987]
- HAR shown effective for recognizing user activities, interactions
- GAR therefore based on HAR methods

What is Group Activity Recognition?

Bao & Intille 2004

- Observing key points on the body allows activities of the person as a whole to be inferred (HAR)
- In the same way, observing behavior of individuals allows us to infer activities of the group
- The group can be observed as an entity in and of itself. (GAR)

Human Activity Recognition (HAR) using Machine Learning

Technology for

Pervasive Computing

Application User Activity Data Classification Feature Data Feature Extraction Raw Sensor Data Local Sensor Sampling Mobile Phone

- HAR using mobile sensing devices is an established field.
- Sensor sampling yields discrete measurements of continuous signals
- Windowing allows signal features to be extracted
- Machine learning matches patterns in features to activity labels

So how do we apply this to groups of individuals?

Group Activity Recognition (GAR)

Single-user data must be fused Low abstraction high costs high accuracy High abstraction Lower costs but accuracy? Where is the tradeoff?

Experiment Hardware: Wireless Sensing

- Open-source, open-hardware sensor node project: <u>www.jennisense.teco.edu</u>
- ContikiOS ported to the Jennic wireless microcontroller from NXP
- Sensing
 - ADXL335 3D acceleration sensor
 - Sampled at 33 Hz
 - (Current version: 3D Acc./Gyro/Compass, light, temp, pressure, infrared distance, time-of-flight)
- Feature extraction
 - Window size of 0.5s w/ 50% overlap
 - Mean and variance only
- Single-user activity recognition
 - Supervised
 - kNN (k=10, no weighting)
 - DT (C4.5)
 - nB (no kernel estimation, single Gaussian)
 - Unsupervised
 - K-means clustering, hard, top 1
 - Uses subtractive clustering for cluster identification

Coffee Cup/ jenPart WSN

ConTiki OS Tasks:

System:

- •Sensor sampling
- •Local feature extraction

jenPart sensor node

Local activity recognition

802.15.4

Mobile Phone

System:

- Neo Freerunner
- Debian Linux
- Tasks:
- •Global multi-user group
- activity recognition
- Global and local training
- Visualization
- Administration

System operational modes

Doubly-labeling problem

Experiment

- Evaluate GAR rates and power consumption using different data abstraction levels
 - Raw sensor data
 - Sensor signal features
 - Local activities
- Raw sensor data and feature based GAR accuracies identical (feature selection)
- Using local activities = doubly labeling
 - Separate local and global training phases
 - Local clustering (unsupervised)
- Group activities:
 - Meeting, Presentation, Coffee break
- Single-user activities:
 - Mug on table, holding in hand, gesticulating, drinking
- 3 subjects, 45 mins, 22,700 vectors

Experiment

12 08.12.2011 Dawud Gordon

Technology for Pervasive Computing

a) Local Activities (Averaged Over Nodes)DataDTkNNnBBasisAcc. F-meas.Acc. F-meas.Acc. F-meas.Features0.9580.9580.9540.9550.9410.943

- In total 9 classifiers, 3 per node
- Values averaged over nodes
- High results indicates simple classification problem
- Little variance over nodes and classifiers

Feature-based recognition provides decent results – information is there!

But (very) naïve Bayes fails – multiple clusters

Using classified activities produces low GAR rates

- Data analysis: users could not reproduce own behavior min/max, variance
- Clustering produces promising results!
 - Hard, top-1 clustering not optimal for kNN, nB
 - Soft clustering approaches should improve on this.

Mode	Data Volume (B/s)		ıe	Neo Freerunner Avg(P) (W)	Smart Avg(P) (mW)	Mug E _{Tx} (mJ)
Raw Data		404.25		1.771	24.574	1.012
Features		107.25		1.723	24.233	0.909
Classes/Clusters		12.375		1.700	23.140	0.605

Significant reductions in transmitted data volume

- Small reductions in total device power consumption
 - Due to scenario, low sample rate, small number of features and sensors, etc.
- Better indicator is how much energy is spent on communication
 - Still doesn't quit scale with volume
 - Due to packet overheard/scenario paramters

Summary

- HAR can be used to recognize group activities
- Abstracting to features yields 96% recognition, saves 10% transmission energy
- Abstracting to local activities saves 33% more energy, but creates labeling issues
 - Users cannot reproduce behavior under different conditions (50% acc. using activities)
 - Clustering promising (76% with room for improvement)
- Conditions for GAR are different than HAR
 - More distinct clusters due to multi-user (nB results)

Future work

- Explore other labeling approaches
- Soft probabilistic clustering
- Distribute GAR classification as well

Thank You!Questions?

