WoR-MAC: Combining Wake-on-Radio with Quality-of-Service for Intelligent Environments

The Ninth International Conference on Networked Sensing Systems (INSS) 2012

Dawud Gordon, Matthias Berning, Rayan El Masri and Michael Beigl, KIT, TecO
Johannes Blanckenstein and Jirka Klaue, EADS Innovation Works
Motivation – Intelligent Environments

- Heterogeneous mobile/non-mobile devices
  - Power consumption – lifetime critical aspect
- Various human-centric applications
  - Different communication modalities
  - Different QoS requirements
- Wireless communication necessary
  - Reduce energy consumption w/o sacrificing QoS?
WoR-MAC – Protocol Design

- X-MAC – targeted wake-ups using strobed, addressed preambles
  - Low power consumption
  - Static QoS properties
  - High overhead for each packet

  How can we combine power consumption of X-MAC with QoS of other protocols?

- WoR-MAC – allow nodes to wake to contention
WoR-MAC – Protocol Design

- Group-addressed wake-ups
- Parameterized ACKs
Simulation Environment

- Modeled using OPNET simulator
- Evaluated using CSMA-CA and TDMA
- Generic IE application modeled
- Test “subject” enters room every 10 mins
- Stays for 5 mins, repeated over 12 hrs
- Communication period initiated every 5s
  - Initiation done by user
- Each node generates 1 - 5 packets
- Each packet addressed to 1 - 5 receiver nodes
- 2m x 3m area, 5 – 100 nodes step 5
- Monitored:
  - QoS: latency, packet loss
  - energy consumption

States of CC2420

- Off 0mA
- Standby 10mA
- RX ON 85mA
- TX ON 120mA
- Hibernate 0.1μA
- Sleep 250μA
Results - Latency

- X-MAC latency order of magnitude higher
- WoR increases dependence on \# of nodes
- WoR-TDMA shows expected offset
- WoR-CSMA improves latency over CSMA-CA
  - Due to discarding packets at end of period
  - Affects packet loss

WoR-MAC maintains latency, accounting for initial delay
Results – Packet Loss

Average packet loss

WoR-MAC maintains packet loss across embedding
Results – Energy Consumption

Average energy consumed per node

WoR-MAC reduces energy, sometimes surpassing X-MAC
OTHER APPLICATIONS
Automotive Sensing/Actuation (CRF)

- Sensor-actuator network to reduce cable-tree
  - Increase redundant communication pathways
- 3 different levels of danger
- Each level with different QoS-energy consumption trade-off
- WoR-MAC switches embedded MAC to meet warning level requirements

3 WARNING LEVELS

- None
- Warning
- Alarm

Environment
Vehicle
Actuators
Aeronautic structural monitoring

- Structural monitoring in airplanes
  - Door surrounding impact detection
  - Fuselage structural health monitoring
- Weight is crucial
- Reduce cables, increase maintainability
- Constant sensor measurements
  - Temperature differential harvesting
- Data communication on tarmac
Conclusion

- IE’s have special requirements
  - Low power for mobile devices / post-hoc
  - App dependent QoS
- WoR-MAC – WoR-CSMA and WoR-TDMA
  - Low activity => low power consumption
  - High activity => QoS of embedded protocol
- Applications outside of IE

THANK YOU!
QUESTIONS?!