
Construction of Adaptive Web-Applications from
Reusable Components

Guntram Graef and Martin Gaedke

Telecooperation Office (TecO), University of Karlsruhe, Vincenz-Priessnitz Str. 1,
76131 Karlsruhe, Germany, Tel.: +49 (721) 6902-79, Fax: -16,

E-Mail: {graef|gaedke}@teco.edu

Abstract. The Web has become a ubiquitous environment for application
delivery. The originally intended idea, as a distributed system for knowledge-
interchange, has given way to organizations offering their products and services
using the Web as a global point of sale. The centralized delivery-mechanism
enables the construction of E-Commerce applications personalized for each
user by using behavior analysis. Current technologies suffer from the Web's
legacy and use Log file-analysis or collaborative filtering only to adapt the
content to users' needs. Motivated by the results of collaborative filtering
algorithms, we describe a construction approach based on the abstract concept
of services. To support the fine-grained concept we use the component-based
WebComposition Markup Language to support reuse and seamless evolution of
E-Commerce applications.

1 Introduction

While originally intended as a medium for distributing information in a
document-centric form, the World Wide Web [3] has become much more than that.
With the introduction of dynamism both on the client-side and the server-side the
Web has emerged as a new platform for software applications serving a variety of
purposes such as E-Commerce.

An important aspect that distinguishes applications on the Web from PC or
work station applications is their central deployment. Software serving a large
number of users can be installed and maintained in one single location. This
drastically reduces cost and duration needed for deploying new or multiple
versions of an application. It also means that the behavior of users can be observed
in a single location.

Maes and Shardanand demonstrated in [15] how centrally acquired data about
user interests can be utilized to provide users with information adapted to their
preferences. With the work presented in this paper we go one step further. Rather
than dynamically generating single html pages with information such as product
recommendations we adapt complete E-Commerce applications to the needs of
individual customers.

A fundamental requirement for the automatic adaptation of applications in a
flexible and evolution oriented way is the availability of all necessary functionality

and features as independent building blocks or components. The document based
implementation model of the Web neither allows for the granularity needed for this
kind of components nor does it provide mechanisms for abstraction. Thus it is for
example not possible to implement a component as a normal Web resource that
represents a feature such as a corporate identity design applicable to all Web
applications of an organization. We can overcome this problem with
WebComposition, a component-based approach to Web development that we will
detail at the beginning of third section of this contribution. After that we will
introduce services as higher level functional abstractions and describe how we use
a service factory and domain-specific languages to improve productivity and
maintainability for service development. We will conclude that section with our
mechanism for the automatic adaptation of an application to individual customers'
needs. In the fourth section we will detail the algorithm we employ for identifying
individual customers' requirements. An evaluation of our work and a conclusion
can be found at the end of this contribution. Beforehand, in the following section,
we will discuss the current state of art concerning individual and adaptive
applications.

2 Previous work

The problem of directly addressing a user and his or her personal needs has been
subject to research for many years. Much of this work has been centered around
user interface development, which is quite natural since this is the part of an
application most visible to users. There is also some work related to adaptive Web
sites.

Solutions can be divided into adaptive or individual (parts of) applications. An
adaptive application presents a general solution that adapts its behavior during run-
time to the user. An individual application in contrast has been produced for the
specific needs of a user.

2.1 Adaptive and Individual User Interfaces

In the user interface design community there has been work on both adaptive
user interfaces as well as the development of individual user interfaces. Adaptive
user interfaces are widely discussed in contributions like FLEXEL [17] or [14], but
their adaptation process is limited to the analysis of a single user's behavior.
Individual user interface development has been addressed with TADEUS [13] and
ADEPT [11]. These tools include a user model, which is used to automatically
produce individual user interfaces or user interface descriptions. A major limitation
is that the user model has to be defined manually by the UI developer.

2.2 Adaptive Web Sites

In the Web community there has been work on adaptive Web sites following
several different approaches. Projects such as WebWatcher [2]or AVANTI [5] use
a path prediction approach. This technique is closely tied to the structure of
hypertext consisting of information resources (documents) and links. Path
prediction tries to forecast the next action a user wants to perform after reaching a
given state. The notion of state is usually tied to the recently viewed document
resource. In a more complex E-Commerce application, state is not limited to
currently viewed resources but might also include such things as state of product
configurations created by a customer in advance of an ordering process which
might make path prediction much more complex. Both examples also rely on
manual input from the user about his personal interests.

Another technique is collaborative filtering. It is based on user preferences and
user behavior in the past rather than navigation between application states. This
approach described in [15] uses information about user interests to determine
groups of users with similar interests. The calculated results can be used as
recommendation of resources for a user based on previously accessed resources by
other users in the same group. The idea has been demonstrated in an experimental
implementation called Ringo. About 2000 users entered ratings for audio-cd-titles
and music artists. This data has been used to dynamically generate html-pages with
music recommendations for each user.

While Ringo requires users to actively provide information about their
preferences, some commercial applications such as Amazon.com [1] try to infer
the likes and dislikes of its customers from observed actions such as ordering a
product. This proved to be a feature crucial for user acceptance of any type of
adaptive mechanism in E-Commerce applications. In a highly competitive
environment such as the Internet it is mandatory to avoid or minimize any
customer workload.

3 Evolution and Adaptation of E-Commerce Applications

The automatic adaptation of whole applications on the level of code primitives
is not feasible with current technology. We need to find proper abstractions and
components as application building blocks to reduce the complexity of the
application adaptation process. Therefore we divide the construction of software
into a supply oriented micro level for providing functional components and a
demand oriented macro level where functional components are federated in the
application according to user demand.

The only kind of code abstraction ubiquitous on the Web are document
resources. Unfortunately these do not satisfy our requirements both in terms of
supported granularity and expressive power of inter-document relations. To
overcome these limitations we based our approach on the WebComposition
programming model.

On top of this general programming model we use the notion of services as
higher level building blocks encapsulating functionality required to perform a
certain task such as placement of an order or providing customer feedback. In
contrast to lower level system components, the function of services can be
perceived and described without specific technical knowledge. Service components
form the basis for macro level application adaptation and evolution.

To support the development and seamless evolution of a large number of
services we introduce a process for service production based on a domain specific
language and a service factory. The macro level adaptation of E-Commerce
applications is done through a special application service. This service controls
how other services are presented to the customer based on the automatic analysis
of customer requirements detailed later in this contribution.

3.1 WebComposition

The WebComposition programming model is based on the WebComposition
Markup Language [8] and the WebComposition approach [10]. It enables us to
perform component-based software development for the Web in a platform
independent and evolution oriented way.

3.2 Reuse oriented programming model

A major productivity factor during all cycles of software development is reuse.
The WebComposition programming model aims at facilitating reuse of
development artifacts of any kind of granularity on various levels of abstraction.
Code fragments of any given target language are modeled as WebComposition
components. Components define a first level of code abstraction.

Between WebComposition components it is possible to define reuse relations
such as aggregation (has-part) and specialization (inherits-from). Thus the model is
object-oriented. More specifically it is based on a prototype-instance paradigm
[18] instead of a class-based object-oriented model. This means that instantiated
objects can inherit the capabilities of components by simply using them as
prototypes. It is not necessary to provide class definitions. In the WebComposition
model an object is an instance of a component and a component can serve as a
prototype for other components. A component may be used like an abstract class,
i.e. it could serve as a prototype for a certain type of components.

Prototyping as described in [18] is a mechanism to implement code sharing
among objects. Alternatively multiple references of a component could be used to
share its code. Sharing is fundamental for efficient reuse and maintenance because
it enables us to keep modifications local. This is in contrast to other suggested
object-oriented Web models such as WOOM [4].

3.3 WebComposition Markup Language

Components are described using the WebComposition Markup Language
(WCML). WCML extends the semantics of common Web languages with
statements for component definition and inter-component relations. WCML is an
application of the eXtended Markup Language (XML). This way we can build on
the familiarity of Web developers with markup languages and the availability of
various tools such as syntax parsers. Components are organized in virtual
component stores, which are implemented as documents, database tables or Web
server resources. A component repository allows for retrieval of components
through various access models [7]. WCML components can be mapped
automatically to the Web implementation model using a compiler. This mechanism
is independent of any specific deployment platform or language as the
programming model is generic. Migration to a new implementation language or
simultaneous support of several implementation languages can be achieved by
using object-oriented concepts like polymorphism and WCML components
encapsulating target language specific code.

3.4 Services as Functional Abstractions

The typical function of a Web based E-Commerce system is to enable customers
to perform tasks such as product ordering or information retrieval. In a more
general sense we can abstract from the concrete possibilities a system offers to its
customers. Instead we can state that an E-Commerce system provides a set of
services to its users. Each product, news channel or item of information can be
modeled as a service provided by the system and the organization behind it. As a
concrete example we could realize the selling of office chairs through such a
service.

This definition of a service provides us with a powerful task oriented
abstraction. A service as a whole tends to change very little when technical
changes occur as compared to less abstract components.

Services are based on a level of abstraction both familiar to customers as well as
domain experts in an organization. Interest in and knowledge about the
requirements of a certain service is often found in a single person or small
organizational unit. Customer activities most easily can be described as performing
a set of tasks. Implementing tasks as service components we can base our
application adaptation process on customer access to and federation of a set of
components. Changes in an application on a task-level granularity also does not
tend to bring the same level of confusion sometimes found when changes occur on
a sub-task level. Services usually consist of components describing different
aspects such as layout, navigation, language, content and processing. A more
detailed description of service components can be found in [9].

3.5 Automated Service Production

Due to our practical experience with E-Commerce application environments
there tend to be groups of services that only differ from each other in rather limited
ways but can account for a large percentage of the total amount of services needed.
For the development of this kind of services we try to bridge the gap between less
technically sophisticated domain experts and the development system by means of
introducing a service factory.

Our service factory uses service descriptions to automatically produce
components implementing a service in the WebComposition programming model.
A service description contains all information necessary to distinguish a specific
service from a general type of services. Thus a service for ordering office chairs
might be of the general type of a product order service while possessing numerous
specific properties describing its products, configuration options, user interface
dialog elements and so on. The service description can be specified using a special
visual editor or a simplified human readable markup language. In contrast to many
code production tools available, maintenance of the services remains on the service
description level.

HTM
LASPHTML

WCML-

WebComposition-Model Implementation
Model

Service-
factory CompilerService

Compo-
nents

Component Store

Framework
Compo-
nents

Domain-
Model

Service
Defi-
nition

Figure 1: Service production

The service components produced by the service factory inherit from existing
WebComposition components that form a component framework for service
development. Thus basic changes affecting a larger group of services such as all
information services can be done by changing a single set of components in the
framework. The service descriptions for single services stay unaffected. This
separation of concerns into different components and levels of the system
architecture allows for an incremental evolution of individual services and groups
of services [6]. The process of service production has been summarized in figure 1.

3.6 Adaptation Process

We consider a Web application as a special kind of service that contains all the
functionality a system offers to its users. In most cases it will contain other services
tailored to more specific tasks. We call this service the application service.

The adaptation process (figure 2) is performed by the application service. It is
based on customer requirements data. In the next section we will therefore describe
how this data can be obtained and processed automatically. The application service

combines other services and makes them available according to their importance to
the customer. Thus a service available in the overall system might either be
presented to a customer more or less prominently or hidden. In this way the
customer's cognitive capacity and the available bandwidth for system to customer
interaction can be used in an optimized way.

4 Individual Customer Requirements Analysis

Determining the needs of an individual customer is the basis for providing an
adaptation mechanism for any kind of Web application. A customer needs certain
functionality presented to him or her in a way suiting his or her preferred style of
interaction. In this section, we will discuss the selection of functionality in the form
of services in more detail.

Service
A

Service
B

Service
C

Service
D

Service
E

Service
F

Service
A

Service
B

Service
E

Service A

Service B

Service
E

Customer requirements

Service
Selection

Service Presentation

Figure 2: Adaption to customer requirements

4.1 The Service Selection Problem

We have a given set of services S, a set of customers C and a set of customer
actions A in the past obtained from the observation of customer behavior. Each action
a ∈ A is related to a service s ∈ S and a customer c ∈ C.

The problem is how to find a set of Services S(c) for a customer c that most
accurately reflects those services the customer would use in the future assuming equal
exposure of each service to the customer.

A simple approach to this problem is to calculate S(c) directly from the set of
services related to past actions of the same customer c. In single user environments
this usually is the only possible solution. We will use this method to determine those
services that are regularly used by a customer. The algorithm implementing this
method will be referred to as the conservative service selection algorithm.

Obviously not all services a customer might be willing to use in the future can be
derived from the customer's past actions alone. Fortunately in our multi-customer case
we have access to multiple customers' activity data. Thus we can employ a second
algorithm for determining services of use to a customer, which we call the social
service selection algorithm.

4.2 Observation of Past Customer Behavior

Before we can apply any algorithm for service selection we need to obtain A, the
set of past customer actions. A very widespread approach to gathering information
about user activity on the Internet is through logging HTTP-requests made to the Web
server. This works if each customer action that is of interest is directly related to a set
of URLs on the Web server. It also assumes that the result of the action (such as
success of subsequent processing on the server) as well as the current application state
is not relevant. In our E-Commerce scenarios both assumptions couldn't be made, due
to the use of dynamic URLs and complex application state. Thus we where forced to
explicitly log certain user actions from within our application when they occurred.

4.3 Conservative Service Selection Algorithm

We call this algorithm "conservative", because all services selected have already
been used by the same customer before and no new suggestions are added. First, for
each customer it is determined which services Sused ⊂ S were used in the past. The
number of successful invocations of a service by the customer, as indicated by the
customers past actions Ac, is counted. A service s has been successfully used if e.g. an
order has been completed or an information item has been viewed long enough.
Finally for each customer c the n most heavily used services from Sused are selected
as the result set S(c).

4.4 Social Service Selection Algorithm

Our approach for this algorithm is based on the implicit exploitation of recurrent
patterns in user behavior. Behavioral patterns state that people that exhibited a certain
past behavior Bp are likely to exert a certain behavior in the future Bf with recent and
expected future behavior forming a complete behavioral pattern [16]. A simple such
pattern might be that a person that once used a service to order a telephone installation
will very likely (with probability p) use another service to buy accessories for that
telephone.

One way to exploit this for service selection is the explicit definition of association
rules [12] capturing these patterns. This requires explicit and up to date knowledge of
the existing behavioral patterns, which is usually not available because their number
and complexity grow exponentially with the number of Services. Even for the most
trivial case where each behavior is only related to one service, the number of possible
relations between past user behaviors and predicted user behaviors is O(|S|²).

Our approach is based on the implicit exploitation of behavioral patterns. Instead
of directly associating observed actions via rules with services, we do so indirectly by
deriving associations between customers. The algorithm we suggest consists of the
following steps:

1. Customer Profile Generation: For each customer c ∈ C generate a profile p based
on all actions a ∈ A related to that customer. The set of customer profiles is
called P.

2. Determination of User Profile Similarity Relation: Calculate a similarity relation
between each pair of customer profiles in P.

3. Target Profile Generation: For each p ∈ P calculate a target profile t.
4. Service Selection: Use the target profile t to determine the service selection S(c).
A customer profile consists of an attribute vector. Each attribute describes the level of
usage of a service by the customer. We applied the following mapping of customer
activities to profile attributes:

0 = No past actions by the customer related to that service
1 = Service was used by the customer at least once, but never successfully

completed
N = Service successfully was used by the customer N-1 times.

To determine the degree of similarity between two customer profiles we applied a
distance metric based on the mean squared difference between two profile vectors:

1
(Px - Py)²

We use the set of profiles and the similarity metric to generate a "target profile" for
each user. This profile tries to predict what a customer's profile will develop to if
equally exposed to all available services. It is based on the assumption that people
who behaved similar in the past will do so in the future. It also assumes that if a
customer C1 has only partially completed a pattern of behavior, another customer C2
whose profile shows a high degree of similarity compared to C1's profile might
already have executed the remaining part of that pattern. The optimal way to compute
the target profile would be the calculation of a weighted average from all available
customer profile vectors, where the weight would be a function of the similarity
calculated in the previous step of the algorithm. However, for performance reasons
we decided to calculate the target profile as the average vector from the n profiles that
are most similar to the considered customer's profile but that are significantly
different in at least one attribute. This is to avoid the effect of profile convergence and
stabilization if there are many identical profiles (e.g. initial profiles of new
customers).

After generating the target profile t we compute a differential profile d = t - p. We
then use the relations between profile attributes and customer actions and between
customer actions and services to determine the service selection S(c). Our result set
contains services that if used by the customer would change his profile to become
more similar to the target profile.

4.5 Quality of Predictions

We conducted a simple evaluation about the quality of predictions made by the
different algorithms. As the basis for the algorithms we took a set of history data
about past activities of about 1000 users of the Eurovictor II system described in the
next section, and compared our predictions to activities performed by the same users
afterwards. The complete set of existing services was equally exposed to each user.
Thus every user was subject to the same application experience without any
adaptation done during this stage.

We compared the number of selected services that have actually been used during
the following two weeks while applying four different selection algorithms: Random,
Conservative Service Selection Algorithm (CSSA), Social Service Selection
Algorithm (SSSA) and a combination of both CSSA and SSSA, where each of the
two algorithms contributed to the result set.

Applied algorithm Predicted services used per customer
Random 0.7
CSSA 4.5
SSSA 6.2
CSSA and SSSA combined 6.8

Figure 3: Quality of predictions

Figure 3 shows the results. Please note that the numbers in the table should only be
interpreted relative to each other, because the absolute values also depend on the
actual type and number of services and the present behavioral patterns. Obviously,
both CSSA and SSSA produce useful predictions, while the combination of the two
algorithms delivers better results than the application of a single algorithm.

4.6 Runtime Complexity

The conservative service selection algorithm's complexity is relatively low.
Complexity for one customer scales linear with the number of services in the system,
being O(|S|).

Social service selection proves much more complex, since for the selection of
services for each customer, data from all other customers has to be considered. Thus
the algorithms complexity for one customer basically is O(|C| * |S|).

5 Evaluation

The approach presented in this paper has been used to implement a complete
service oriented E-Commerce system. Eurovictor II has been developed in the
Telecooperation Office at the University of Karlsruhe in a joint project with Hewlett-
Packard (HP). The system is currently productive at HP in Europe with more than

10000 regular customers. Eurovictor II has been designed as an evolvable and open
system providing services to internal customers at HP.

The system already offers several hundred services mainly in the areas hardware
orders, software orders, telecommunication, virtual office and news services. Services
have been developed in a decentralized manner by people with moderate technical
skills and have automatically been integrated into the system. Eurovictor II is highly
flexible and adapts itself to each customer based on past activities of all users. It
provides each of its users with an individual application experience.

Figure 4 shows a screenshot from Eurovictor II as it has automatically adapted
itself to a specific customer. The application contains Eurovictor II services that have
been selected using a combination of the two service selection algorithms described in
the previous section. The presentation of the services has also been adapted to the
customer's habits. Frequently used services are displayed more prominently or even
executed automatically. Right after the start of the Web application the "application
changes"-service is automatically invoked, because it has been accessed by the
current customer more frequently than other services. This specific service retrieves
and displays information about the most recent changes during the evolution of what
the customer perceives as personal Eurovictor II application. Another customer might
be welcomed by Eurovictor II with a service that displays a stock report or a company
news summary.

Figure 4: Adaptive Eurovictor II

6 Conclusion

In this paper we have described a platform based on the so-called “service”
abstraction. The platform uses a component-based development model for the Web.
Based on this model we introduced a service factory that enhances productivity

during Web service development and allows technically less sophisticated domain
experts to enable business processes on the Web. An application service together with
a mechanism for the automatic analysis of individual customer requirements enables
the automatic adaptation of applications to individual customers' needs. Components
implementing solutions to different problems are used and reused as building blocks.

From the individual customer's point of view the application performs an automatic
evolution, based on the changing behavior of all customers. The evolution of services
due to changes in business logic is separated from this process and centralized. Logic
closely related to technology is encapsulated in separate components. Thus, we
achieve a clear separation of concerns related to three major sources of change and
fields of expertise: customer requirements, technology and business processes.

As a proof of concept we successfully applied our approach in a mission critical E-
Commerce environment. The results from Eurovictor II encourage us to look at
further issues such as adaptation on a finer granularity optimizing the way individual
tasks can be performed by the customer. Another issue would be the detection and
consideration of a customer's level of user expertise in addition to the requirements in
terms of system functionality.

References

[1] AMAZON.COM, Amazon Homepage: http://www.amazon.com (accessed: May 2000)
[2] R. ARMSTRONG, D. FREITAG, T. JOACHIMS, T. MITCHELL, WebWatcher: a learning

apprentice for the World Wide Web, in: AAAI Spring Symposium, Stanford, U.S., pp. 6-12.
[3] T. BERNERS-LEE, Information Management: A Proposal: CERN. 1998.

http://www.w3.org/Proposal.html
[4] F. CODA, C. GHEZZI, G. VIGNA, F. GARZOTTO, Towards a Software Engineering

Approach to Web Site Development, in: 9th International Workshop on Software
Specification and Design (IWSSD), Ise-shima, Japan.

[5] J. FINK, A. KOBSA, A. NILL, User-oriented adaptivity and adaptability in the AVANTI
project: Microsoft Usability Group, Redmond, Washington, USA 1999.
http://fit.gmd.de/hci/projects/avanti/publications/ms96.html

[6] M. GAEDKE, H.-W. GELLERSEN, A. SCHMIDT, U. STEGEMÜLLER, W. KURR,
Object-oriented Web Engineering for Large-scale Web Service Management, in: Thirty-
Second Annual Hawaii International Conference On System Sciences (HICSS-32), Island of
Maui, USA.

[7] M. GAEDKE, J. REHSE, G. GRAEF, A Repository to facilitate Reuse in Component-
Based Web Engineering, in: International Workshop on Web Engineering at the 8th
International World-Wide Web Conference (WWW8), Toronto, Ontario, Canada.

[8] M. GAEDKE, D. SCHEMPF, H.-W. GELLERSEN, WCML: An enabling technology for
the reuse in object-oriented Web Engineering, in: Poster-Proceedings of the 8th International
World Wide Web Conference (WWW8), Toronto, Ontario, Canada.

[9] M. GAEDKE, K. TUROWSKI, Generic Web-Based Federation of Business Application
Systems for E-Commerce Applications, in: Second International Workshop on Engineering
Federated Information Systems (EFIS'99), eds. S. Conrad, W. Hasselbring, G. Saake,
Kühlungsborn, Germany.

[10] H.-W. GELLERSEN, R. WICKE, M. GAEDKE, WebCompostion: an object-oriented
support system for the Web engineering lifecycle, Computer Networks and ISDN Systems
Special Issue on the 6th Intl. WWW Conference, Santa Clara, CA, USA 1997 1429-1437.

[11] P. JOHNSON, S. WILSON, P. MARKOPOULOS, J. PYCOCK, ADEPT: Advanced
Design Environment for Prototyping with Task Models, in: Human factors in computing
systems (CHI'93), Amsterdam, The Netherlands, pp. 56.

[12] R. MILLER, Y. YANG, Association Rules over Interval Data, in: ACM SIGMOD
international conference on Management of data, Tucson, Arizona, USA, pp. 452-461.

[13] E. SCHLUNGBAUM, T. ELWERT, TADEUS - a model-based approach to the
development of Interactive Software Systems, Rostocker Inform. Berichte 17 1995 93-104.

[14] M. SCHNEIDER-HUFSCHMIDT, T. KÜHME, U. MALINOWSKI, Adaptive user
interfaces : principles and practice, Amsterdam; New York, 1993.

[15] U. SHARDANAND, P. MAES, Social information filtering: algorithms for automating
"word of mouth", in: Human factors in computing systems (CHI'95), Denver, USA, 210-217

[16] B. F. SKINNER, Science and human behavior, New York, 1953.
[17] C. THOMAS, M. KROGSÆTER, An adaptive environment for the user interface of

Excel, in: international workshop on Intelligent User Interfaces (IUI), pp. 123-130.
[18] D. UNGAR, R. B. SMITH, Self: The Power of Simplicity, in: OOPSLA '87, pp. 227-242.

