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Abstract. Intelligent Environments are currently mostly implemented with WSN technologies using conventional connection-
based communications. However, connection-based communications may impede progress towards intelligent environments in-
volving massive amounts of sensor nodes. The goal of this paper is to chart a field of more suitable technologies for communica-
tion in intelligent environments, which we call collective transmission methods. The idea of collective transmission is to establish
communication not between single senders and single receivers but between collectives of senders and receivers, by making use
of constructive interference of simultaneously sent signals.

We detail how the collective transmission approach can be realized for a concrete application scenario: item-level tagging using
printed organic electronics. We describe an algorithm that can be realized on very simple tags. With a testbed implementation,
we show that this algorithm can realize robust, collective, approximate read-out of 21 simultaneously sent signals.
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1. Introduction

The emergence of intelligence has its origin in per-
ception of the physical world and communication be-
tween different participants. To realize the vision of
intelligent environments, massive amounts of sensor
data need to be processed in a spatially distributed
way. Communication in intelligent environments is
currently mostly implemented using WSN technolo-
gies with conventional connection-based communi-
cations. However, connection-based communications
may be unsuitable for IE scenarios involving massive
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amounts of relatively simple sensor nodes. The goal of
this paper is to point at a spectrum of more suitable
technologies for communication in intelligent environ-
ments, which we call collective transmission meth-
ods. The idea of collective transmission is to establish
communication not between single senders and single
receivers but between collectives of senders and re-
ceivers. We focus our discussion on a simple, yet prac-
tically relevant and soon realizable application exam-
ple from the domain of next generation business pro-
cess management technologies: item level tagging us-
ing extremely low-cost tags implemented with printed
organic electronics.

The main part of the paper is structured as follows.
After an introduction to the application scenario (Sec-
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tion 2) and a discussion of related works (Section 3),
we introduce the general approach and its wider appli-
cability in Section 4. In Section 5, we explore the prac-
tical realization of the scenario with our approach. An
experimental evaluation with our printed electronics
test bed (a simulation using silicon-based hardware) is
presented and discussed in Section 6.

2. Business systems for smart supply chain
management

Store houses, factories, and retail stores are very
likely to be among the first intelligent environments.
Many business processes can be automated and opti-
mized using item-level tagging [4,26]. When individ-
ual items can be uniquely identified, functions, such as
registration of goods received, quality control and in-
store processes can be implemented more efficiently:

– Goods received: When a pallet with goods ar-
rives, the receiving company usually checks if the
right amount and the right goods were delivered.
Using item-level tagging, a system can identify
which products are packed in a pallet, and com-
pare the quantities and the product identifiers with
those in the advanced shipping notification.

– Quality control: After checking that a pallet con-
tains the right amount of goods, one checks if the
delivered goods fulfill a certain set of quality stan-
dards [25]. The data from item-level sensors can
be queried to check if for instance a certain tem-
perature threshold is exceeded.

– In-store processes: Using item-level tagging, re-
tailers can automatically check whether there are
enough goods in the shelves [23]. Also, retailers
can check if goods are arranged in a correct way
in the shelves, by checking compliance to prede-
fined layout plans, so called planograms [24].

Item-level tagging does not only allow automatiza-
tion, it also allows more efficient implementation of
processes. For instance, the temperature within a pallet
with goods may be distributed unevenly during trans-
port and may display different dynamics [9]. Because
of that, tagging the complete pallet with only a single
smart label captures an incomplete view of the trans-
portation process. As a result, a group of packages in
an area that has been over-heated may remain undis-
covered if it is far enough from the smart label mon-
itoring the temperature. With item-level tagging this

could be avoided, as packages would be monitored in-
dividually.

Even though such processes can be efficiently au-
tomated and optimized using item-level tagging, item-
level data is mostly only needed on a technical level to
implement the processes themselves. Many of the pro-
cesses do not require item-level data but some func-
tion computable from item-level data. For instance, for
quality control it is in most cases sufficient to know if a
pallet is OK or not. If it is, it can be further processed.
However, if it does not pass the test, goods might be
checked individually before the whole pallet would be
sent back.

This scenario makes a strong case for sensing en-
vironments using collective communication. Collec-
tive communication not only makes the communica-
tion process simpler, it also facilitates data processing.
This is exemplified using the quality control process:

– Simpler process: Using item-level tagging with-
out collective communication involves repeatedly
scanning the pallet from different positions, for
example with an RFID reader. This is mainly be-
cause physical interferences [5] prevent multiple
smart labels from being read with one readout.
Using collective communication, only one read-
out is needed, thus making the process simpler
and faster to execute.

– Simpler data processing: When using item-level
tagging without collective communication, the
reader device will send the data it gathers to an-
other system where data processing takes place,
such as an Enterprise Resource Planning (ERP)
system or an Inventory Management System.
This system will eliminate duplicate readings and
check if the data fulfills predefined standards, for
instance, if the temperature of each of the up to
1000 items is below a certain threshold. After
that, the system will decide whether the pallet
needs further inspection. With collective commu-
nication, the aggregated information on the com-
munication channel can be evaluated directly, on
the reader itself, to decide if the pallet is OK. Only
one reading instead of up to 1000 readings has to
be processed.

The vision of item-level tagging comes closer to its
realization with organic printed electronics. Organic
printed smart labels will be capable of recording sen-
sor data such as temperature, humidity or light expo-
sure. Organic smart label technology promises ultra
low-cost massive deployment in industry, food, phar-
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maceutics, healthcare and consumer markets, as tags
can simply be printed on packages.

Production of organic electronic circuits can be
faster, cheaper and simpler than RFID, as industrial
standard printers can be used instead of dust-free fab-
rication facilities needed for silicon-based electronics,
allowing massive deployment [19]. However, printed
electronics cannot compete in terms of performance,
reliability, and size with RFID.

Applications for organic printed smart labels are, for
instance, in cost sensitive retail: super markets have on
average a shrinkage of 2.77% per year [17]. This is a
significant amount as the average profit margin is only
1.10%. The percentage of perishable goods amounts to
30%, causing more than 56% of the entire shrinkage
[2] by spoilage. The principal reasons for spoilage are
expired products or interrupted cold chains within sup-
ply chains from the manufacturer to the retail stores.
A key scenario for the first organic printed electron-
ics is therefore temperature monitoring in logistics and
supply chain management, and first destructive binary
organic temperature sensors have been developed1.

In the following, we assume a scenario of a pallet
arriving at a storage facility. The pallet contains a large
number of items2, which are checked for the maxi-
mal temperatures measured during transport for qual-
ity control. We are interested in two specific tests:

– Binary query: have any items been exposed to a
certain temperature?

– Proportion query: how many of the items have
been exposed to a given temperature?

In case of cold chains, for instance, a pallet could be
rejected if a certain temperature threshold has been ex-
ceeded during transport. For some good and if tem-
peratures were not too high, goods could still be sold
at a discount, reducing the financial damage. More-
over, these checks would allow the transport company
to detect failures of the cooling system in a truck
early and avoid successive damaging of goods. Fig-
ure 1 shows our application scenario for readout of
item level tagging in supply chain management. Pal-
lets are investigated by a screening device, which can
process the compound signal received from the simul-
taneously sending tags attached to goods in packages
piled up on the pallet.

1http://www.polyic.com
2http://mstonline.de/mikrosystemtechnik/mst-smart-

label/Clustermeetingrfid/locostix

Fig. 1. A typical application scenario for item level tagging in supply
chain management: pallets are investigated by a screening device.

3. Related works

Communications in wireless sensor networks be-
tween a number of source nodes and a collecting
sink node are mostly realized using connection-based
communication schemes. Conventional channel ac-
cess communication schemes, such as time division
multiple-access (TDMA) [22], are designed to avoid
collisions of data packages on the channel. This cre-
ates a range of problems for the scenario of commu-
nication between a large number of tags and the col-
lecting reader node, as tags have to be handled by the
reader individually. To achieve this, each source node
needs to have a unique identity so that communica-
tion with it can be separated from communication with
other nodes. In the example of TDMA, these individual
connections simply take more time. For other proto-
cols it means a larger bandwidth (FDMA) or decreas-
ing throughput (CDMA). In any case, the traditional
protocols do not scale easily to large amounts of sensor
nodes.

The idea to allow and employ simultaneous data
transmission of source nodes to a designated sink in a
wireless sensor network is relatively new [15,16]. In
these works, constructive interference between super-
imposing signals of sensor nodes sending the same sig-
nal is exploited to improve the robustness or strength
of the signal at the receiver. Such concurrent transmis-
sion of data in wireless sensor networks promises to
gain more performance in terms of energy efficiency,
throughput and latency [18,20].

A practical realization of a robust system for count-
ing sensor nodes using constructive interference and
statistical properties in a communication scheme has
been introduced by Krohn [11–14] with Synchronous
Distributed Jam Signaling (SDJS). Based on the frac-
tion of time slots occupied by jam signals among a
fixed number of available slots the number of transmit-
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ting devices can be estimated in a highly mobile and
ad-hoc wireless network. Our method extends on this,
as we aim to estimate the amounts of classes with high
accuracy.

The work most closely related to our method [6–8],
exploits the superposition of the signals on the chan-
nel as a calculator for specific functions, as simultane-
ous transmission realizes an addition function: Gold-
enbaum and Stańczak show how this can be used for
calculating the arithmetic or geometric mean of mea-
surements in one step during simultaneous transmis-
sion of the observed data by the sensor nodes.

To realize computation on the channel, nodes per-
form at first preprocessing on the measurements before
transmitting the sensed data simultaneously. To create
a constructive superposition, they encode the sensed
data with predetermined random phase sequences. On
the receiver side a post-processing is performed to re-
cover the result of the calculated function. The authors
claim that a coarse block/sequence synchronization is
sufficient to initiate a constructive superposition on the
channel. Both the reader system of Goldenbaum and
Stańczak and the counter implemented by Krohn yield
a single numerical value. In the above scenario of the
proportion query however, we need to transmit a multi-
set of values. Our reader system processes the superim-
posed codes to estimate the proportion of sensor nodes
that sent a certain value.

Theoretical evaluations, as proposed e.g. in [6–8],
yield promising results, however an instrumentation in
a realistic setting might face considerable additional
challenges, especially regarding accuracy [1,3] and ro-
bustness against

– interactions between neighboring and distant
nodes,

– lack of accuracy in synchronization between
nodes,

– ambient noise,
– changes in ambient noise,
– changes in transmission power, frequency and

phase offset of nodes.

Questions of robustness are particularly important for
low-cost nodes, such as printed organic electronic
smart labels. We therefore implemented a testbed for
collaborative transmission methods and tested our al-
gorithm under realistic conditions. All tests were per-
formed in the student lab at TecO under regular work-
ing conditions. Our implementation for a set of 21
nodes thus allows a realistic evaluation of the practical
feasibility of the method in the scenario.

4. General approach

The general problem we study in this paper is how to
obtain information from a set of simultaneously send-
ing nodes, in our scenario the tags attached to goods
on the pallet. We aim to request from the pallet which
proportion of tags measured which values. In principle,
this could be done by querying tags individually us-
ing any of the well-established protocols. Implement-
ing protocols that assign a distinct channel to each
sender however is not feasible in our scenario, since
the senders need to be simple and we assume a large
number of senders.

For these reasons, we suggest to use novel collec-
tive, approximate versions of the traditional multiple
access techniques of time division, frequency division,
or code division (TDMA, FDMA, CDMA). The SDJS
approach of Krohn [12] for counting the number of
senders, for instance, can be viewed as a collective,
approximate version of TDMA: all tags send a single
burst signal in a random time slot of a given base inter-
val and the reader then statistically analyses from the
number of filled time slots, how many tags there might
have been. Similar time-slot techniques could be used
by the reader to ask the pallet, whether a certain value
was measured and even how many tags have measured
a certain value.

In a similar way as SDJS but using code division in-
stead of time division, our goal was to develop an al-
gorithm that can statistically analyze the superimposed
signals from all tags on the pallet and estimate which
proportion of senders sent which value. While time
slots and frequencies can encode ranges of values par-
ticularly well, our code-based method can be general-
ized to encode any type of value.

CDMA is based on bit sequences c that are shared
between a sender S and a receiver R. A bit sequence
v is sent from S as s = c ⊕ v, where ⊕ is the bit-
wise exclusive or. The receiver extracts v from s by
computing v = s ⊕ c. The double application of ⊕c
cancels out c and v is regained. Simultaneous connec-
tions between a number of senders Si and correspond-
ing receivers Ri can then be achieved: simultaneous
transmission yields the superimposed signal as the sum
s = s1+ s2+ · · ·+ sn of signals si sent, since the am-
plitudes of synchronized signals of the same frequency
are approximately added to each other when the bit se-
quences si are sent.

The resulting signal s is similar to each of the orig-
inal signals si, where similarity can be based on vari-
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ous distance metrics on bit sequences v, w ∈ {0, 1}n,
e. g. on the Hamming distance:

dH(v, w) =

n∑
i=1

|vi − wi|. (1)

The similarity can then be defined by choosing a
threshold Tn suitable for the length of the vectors n.
Two bit sequences v, w ∈ {0, 1}n are called similar if
they differ only in a small number Tn of bits:

v ∼ w
def⇔ dH(v, w) � Tn.

A number of pairs of senders and receivers can thus
communicate via codes ci. If the codes ci are chosen
so as to be orthogonal, or at least sufficiently different
from each other, this entails that we can obtain vi from
s by applying v′i = s⊕ ci. The result v′i is similar to vi
so that vi can then be regenerated from v′i, using error
correcting codes. Codes ci can be generated so as to
be orthogonal, however, sufficiently long random bit
sequences, are also suitable: statistical theory suggests
that the probability to obtain two random bit sequences
of low similarity is higher, the longer the sequences
are.

The key properties employed in this encoding are
the notions of similarity and difference and of sim-
ilarity preserving operations and distancing opera-
tions: addition is an operation that preserves similarity,
whereas ⊕ but also the circular bitwise shift are dis-
tancing operations, which make their result different
from both its operands. CDMA uses the ⊕ci encoding
to ensure that the signals si sent are sufficiently differ-
ent, and thus not mixed during simultaneous transmis-
sion.

In our scenario, we only need to ensure that different
values transmitted can be retrieved from the superim-
posed signal. Moreover, the individual tags are much
too simple and their number n is too large, as to allow
for any complex protocol or encoding mechanism to be
implemented. We therefore directly encode numerical
values using a single random bit vector z0 shared by all
tags and the receiver. We obtain sufficiently different
codes zi for numerical values i by circularly shifting
z0 by the amount of i bits, since shifting is a distancing
operation. In this way, a single bit vector z0 ∈ {0, 1}n
can be used to encode n values.

The received signal s = s1 + s2 + · · · + sn is then
simply a sum of encoded numbers zi, directly encod-
ing the multi-set of measured values. If three tags, for

instance, send the values {7, 8, 12} the received signal
would be s = z7+z8+z12. The receiver can now check
the similarity between s and any value zi by simply
testing s ∼ zi.

Using this method, we can already resolve the bi-
nary query outlined in Section 2, to check whether
some goods have been exposed to a temperature higher
than a given threshold. In many cases, however, an es-
timation of how many tags sent which of the values is
needed (proportion query). One way to do this is least
squares estimation (LSE), as we will show in more de-
tail in the next section. The algorithm for the reader
and tags can then be realized:

1. Tags come initialized with a register t set to the
minimum temperature 0, and transmit code z set
to z0.

2. Each tag measures its environment continuously
over a longer duration: if the measured value is
m > t, then

(a) it sets t := m.
(b) it shifts the code z accordingly, that is: sets

z := zt.

3. Reader sends start signal to tags.
4. Tags send their respective z.
5. Reader receives overlayed signal s:

(a) Binary Query:

i. Set S := ∅.
ii. For each possible value zi:

if zi ∼ s then S := S ∪ {zi}.

(b) Proportion Query: For each value z ∈ S: use
Least Squares Estimation (LSE) to compute
proportion of contribution of z:

i. Generate linear equation system for the
found values zi ∈ S.

ii. Estimate parameters ai so that error is
minimal.

iii. Set M := {(ai, zi)|s =
∑

zi∈S ai∗zi}.

(c) Output: return M .

In an actual printed electronics implementation, the
register t and the variable z of steps 1 and 2 would be
combined. It would be possible, for instance, to imple-
ment the two steps with a destructive, physical tem-
perature sensor that shifts a start/stop pointer forward
along the fixed random vector z0 in response to higher
measured temperatures (Fig. 2). When the readout sig-
nal is sent the tag can then respond correctly by send-
ing from start point to end point.
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Fig. 2. A model of a simple tag using a destructive, physical tem-
perature sensor (gray and white bar): the start/stop pointer is shifted
forward along the fixed random vector z0 as increasing temperatures
permanently alter the material of the sensor (grey). When a read-
out signal is received the correspondingly shifted vector would be
transmitted.

5. Collective transmission

We now discuss the details of our implementation of
the algorithm. The architecture of our instrumental set-
up consists of n wireless sensor nodes (the tags) and
a sink node (the reader) processing the received signal
(see Fig. 3). The data transmission of the sensor nodes
is triggered through an external signal (step 3) as in the
case of RFID tagging. After initiating the transmission
process each node in the sensor field is transmitting its
measured sensory value simultaneously. The bit vector
encoding a measured value v to be sent is transmitted
in step 4 by a node sending out a sinusoidal signal in a
time slot if in the sequence of bits a ‘1’ occurs, other-
wise it keeps silent.

In Fig. 3 a possible scenario is depicted. When two
or more nodes are simultaneously transmitting a sinu-
soidal signal, the signal components interfere on the
channel and are received in a superposition by a re-
ceiver. Consequently, the amplitude of the superim-
posed electromagnetic waves is either intensified or
becomes less intense.

In Fig. 4 an example of a superposition between
three sine waves is shown. The amplitude strength de-
pends on the number of participating nodes, their indi-
vidual transmission power, the dominance of the line
of sight components to the scattered multi-path sig-
nal components and the distance between receiver and
sensor nodes. During the transmission of the bit se-
quences from the n sensor nodes, the maximum can
therefore vary in each time slot making measurement
of the strength of the signal difficult. An example for a
received raw signal is depicted in Fig. 5.

By detecting the maximal amplitude in each time
slot a vector of maximal amplitudes is created on the
receiver side (Fig. 6, step 5), which is then used to ex-
tract the sensory information of the collective informa-
tion transmission.

Fig. 3. Principle of collective transmission. Each sensor node
reached by an external trigger signal is transmitting its binary se-
quence at the same time. Based on the different number of ‘1’s in
each time slot different maximal amplitudes are generated. On the
receiver side, the superimposed binary sequence is captured.

Fig. 4. The superposition principle: s(t) is a superimposed signal
generated by three sine signals s1(t), s2(t) and s3(t). The sine
signals are chosen slightly different from each other in frequency,
phase and amplitude strength, i.e. fs1 = 16 Hz, fs2 = 18 Hz and
fs3 = 20 Hz. Thus, when two or more waves traverse the same
space, the amplitude at each point is the sum of the amplitudes of
the individual waves.

For encoding values, we chose a 100-bit-long ran-
dom vector z0 in such a way that zi � zj for i 	= j.
The vector thus allows robust encoding of 100 val-
ues by shifting. Moreover, the relatively long random
sequence makes it possible to benefit from statistical
methods for robust retrieval of vectors from the super-
imposed signal. By statistical properties, a noisy ver-
sion of a random vector may differ in more than a third,
and it is still recognizable [10].

The main steps of the algorithm, the binary query
(step 5a) and the proportion query (step 5b), have dis-
tinct applications. The binary query is a simple and
highly reliable method to find out whether a value has
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Fig. 5. Raw data of a superimposed signal caused by 21 transducers transmitting different binary sequences simultaneously. The signal length is
set to 100 time slots.

Fig. 6. Quantification of the superimposed signal shown in Fig. 5. In each time slot the maximal amplitude is detected and visualized by a single
bar.

been sent at all. The proportion query uses this infor-
mation to additionally compute which percentage of
senders have sent a certain value.

5.1. Binary query

The advantage of collective information transmis-
sion is that we can get sensory information at once
in an environmental monitoring application. Often one
is not interested in single sensory values, but rather
in estimating the state of a sensor field, by detect-
ing whether or not a certain property is present. The
Hamming distance has the property of being suit-
able to identify vectors contained in a received su-
perimposed signal. For calculating the Hamming dis-
tance between two vectors v = (v1, v2, . . . , vn), w =
(w1, w2, . . . , wn) ∈ [0, 1]n ⊂ R

n equation (1) also
applies. However, if two vectors are not in the inter-

val [0, 1] ⊂ R they need to be normalized. For mea-
suring the difference between a measured input vec-
tor v ∈ R

n and an expected vector w ∈ R
n, we nor-

malize to the maximal amplitudes Av = maxi vi and
Aw = maxi wi, yielding the generalized definition:

dH(v, w) =

n∑
i=1

∣∣∣∣
vi
Av

− wi

Aw

∣∣∣∣.

The similarity can then be defined by

v ∼ w
def⇔ dH(v, w)/n < Tn,

where Tn is a threshold suitable for the length of the
vectors n.

In practice the usage of the Hamming distance has
its limits [10], the Hamming metric is applicable only
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if small sets of different vectors are added. The more
vectors are used to encode entities, the lower the prob-
ability of identification. With large sets of different sig-
nals, synchronization issues become more critical and
noise increases. However, the method still scales with
larger numbers of nodes that transmit a small set of
values, as in collective transmission. While noise also
increases in the case of a large number of nodes, espe-
cially due to synchronization issues, values still were
detected reliably in our testbed.

5.2. Proportion query

Using binary query alone the following applications
can already be realized

– detection of an abnormality, for instance, the pal-
let containing perished goods,

– detection of the presence of classes A,B,C indi-
cate temperature intervals, such as A = [0 . . . 8]◦,
B = [10 . . . 25]◦, C = [26 . . . 100]◦.

However, the capabilities of the system can be ex-
tended considerably when we can estimate the propor-
tions of the classes A,B,C, e.g. computing the per-
centages of senders in the classes as A = 30%, B =
60%, C = 10%.

To realize the proportion query, a mathematical for-
malization of the superposition principle combined
with the statistical mechanism is required. Thus, the
first step is to collect the possible vectors si that can be
sent in a matrix A. Therefore, let

A = (s1s2 · · · sM ) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
0 1 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

be an N × M matrix that contains the M vectors
s1, s2, . . . , sM of length N .

The modeling of superposition is based on a linear
system, which is additive and homogeneous. Hence,
the physical model is given by the linear system

z(a1s1 + a2s2 + a3s3 + · · ·+ aMsM ) = y , (2)

where the parameters ai ∈ R indicate the number of
sensor nodes that have sent out the binary sequence
si ∈ {0, 1}N . The variable y ∈ R

N contains the
recorded N maximal amplitudes of the N time slots,

cf. Fig. 6 the received collective information transmis-
sion. To adapt the model to the reality numerically, a
trade-off is required, which is expressed by z ∈ R.

In the implementation, the first step is to solve the
linear system in (2) without considering z, i.e.

â1s1 + â2s2 + â3s3 + · · ·+ ˆaMsM = y . (3)

In the second step the solution â = (â1, . . . , ˆaM )T of
the linear system and the number of the participating
sensor nodes is used to calculate the trade-off z. The
number of the sensor nodes is usually not known. We
therefore operate with percentages of senders, and as-
sume the number of sensor nodes n to be 100 in the
following. If the number of senders is known, n can be
set accordingly.

z =
n∑M

i=1 âi
.

Finally, the solution of the parameters a = (a1, . . . ,
aM ) can be estimated as

ai = âiz for i = 1, . . . ,M .

The component ai of the solution vector a then gives
the estimated percentage of sensor nodes transmitting
the bit sequence vi.

Assuming uncorrelated measurements and equal
Gaussian error σ2, the parameters in a = (a1, . . . , aM )
can be estimated by using linear least squares estima-
tion. Thus, the preliminary solution is given by evalu-
ating

â = (ATA)−1 · (AT y) .

Afterwards, the output vector â is used to get the final
estimation of a by applying a = zâ, where a, â ∈ R

N

and z ∈ R, as described above.

6. Evaluation

For testing our approach, we explicitly chose a mon-
itoring scenario in which the sensors are observing
some environmental parameter and a designated re-
ceiver is reading out the measurements from all sen-
sor nodes located within the range simultaneously. The
monitoring of perishable goods in a cold chain is such
an example. The purpose of the following experiments
is to illustrate the performance and robustness of our
approach in our organic electronics test bed.
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Fig. 7. The research platform consists of 21 transducers and one re-
ceiver connected to a PC. During experiments, transducers are con-
trolled by sensor nodes (not shown).

6.1. Pre-study

According to studies on the constraints of printed
organic electronics [19,21], organic electronics will
behave and develop very differently from traditional
electronics. Thus, for testing purposes, we created
thirty transducers on PCB with off-the-shelf compo-
nents, which conform to the constraints of organic
electronics and in this manner mimic their behavior.
The operating transmission frequency is set to 135
kHz, because tests have shown that an analog oscillator
of the transducer is generating a stable sinusoidal sig-
nal in this low frequency domain when using a small
number of electronic components. Additionally, it has
been considered that first working printed circuits will
be operating in the lower frequency domain. In Fig. 7
the entire experimental platform is shown, which con-
sists of the mentioned transducers, a loop antenna op-
erating in the low frequency domain and one receiver3

connected to a PC, where the computation and visual-
ization of a received transmission is performed.

To see how the collective transmission of the trans-
ducers behaves under real environmental conditions,
we carried out about 360 experiments as follows: By
changing the parameters such as the number of trans-
ducers sending out simultaneously and the distance be-
tween antenna and transducers, we obtained a detailed
behavior of the superimposition on the channel. For
instance, Fig. 8 depicts four histograms gained by ex-
periments with 5, 10, 15, and 30 transducers, respec-
tively. Transducers transmit a sinusoidal signal simul-

3Ettus Research: http://www.ettus.com/products

taneously. Here, the positive amplitudes of the super-
imposed signals are considered. Their histograms re-
semble a Rician distribution as a probability density
function (PDF). The distribution fit for the four ex-
periments is shown in Fig. 9. The distribution of am-
plitudes indicates that an amplitude with a high mag-
nitude is a rare event, that is, the exact coincidence
of amplitudes from several signals concurring at the
same time point is not probable given the hardware.
Our testbed thus reflects lack of synchronization in real
systems.

6.2. Testbed experiment

Experiment design To give proper evaluation results
to the approach proposed in Section 5, we set trans-
ducers to transmit a certain bit sequence corresponding
to a certain value. In this way, the evaluation was per-
formed under realistic and controlled conditions. The
values in the experiment were programmed into the
transducers, but the collective information transmis-
sion (steps 4 and 5) took place as in the case of a real
environmental monitoring scenario. In this way, we ar-
ranged several different setups in which the position
and vector sent by transducers were varied.

To create the required vectors for encoding temper-
ature values, we first generated a 100-bit long equally
distributed pseudo-random bit vector. Then the ran-
domly drawn binary vector was circularly bit-wise
shifted to encode further values, as described in Sec-
tion 4. With respect to circuitry design for organic
printed smart labels the circular bit-wise shifting oper-
ator was used for testing, as it would be cost-efficient
to print tags with only one vector, but synchronization
problems could be critical in this case, leading to false
values being read.

The choice for using a specific 100-bit long vector
was based on preliminary study. The relatively small
bit-length of the z0 vector was chosen carefully. The
use of higher dimensional binary vectors did not im-
prove or make the performance worse, whereas with
the use of lower dimensionality the performance suf-
fers. Moreover, it is possible to encode 100 numerical
values using the shifting method with this vector. In
our experiments the transducers were positioned as it is
shown in Fig. 7 reflecting the intended usage scenario
(Fig. 1).

Through the circular bit-wise shifting operator 100
different temperature classes can be represented, how-
ever with maximally seven possible different values
being used in our instrumental set-up, we limited our
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Fig. 8. The four histograms illustrate the distributions of amplitudes which are generated by 5, 10, 15 and 30 transducers sending a sinusoidal
signal simultaneously.

Fig. 9. The four distributions indicate various Rice PDFs obtained by fitting data of 5, 10, 15 and 30 transducers which sent a sinusoidal signal
simultaneously.

evaluation to a comparison of only these seven possi-
ble classes. We tested all 15 different settings possible.
For each setting, ten trials were executed and evalu-
ated. The testing environment was part of the TecO stu-
dent computing lab, and experiments were conducted
during regular usage of the facilities.

Results Table 1 shows our evaluation results. The
first column describes the setting by chosen values and
transducers. For example a setting of 21 describes the
trials where all 21 transducers sent the same value
and a setting of 9, 6, 6 means nine transducers sent
a value A, six send a value B and the remaining six
send a value C. Column two presents the average

amount of correctly recognized temperature values us-
ing the binary query algorithm exclusively. Column
three shows the mean error with respect to the seven
possible classes for each set of trials when the pro-
portion query algorithm was applied. When compar-
ing against all 100 possible values (fourth column), the
mean error is again considerably lower between 0.01%
and 1.16%.

6.3. Discussion

The experiments suggest, that collective information
transmission is possible. The simple algorithm already
yields results that would be acceptable for a range of
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Table 1

Results

Setting Binary query Proportion query

(accuracy) (mean error per class)

7 classes 100 classes

21 88.57% 1.77% 0.0001%

18.3 89.05% 1.70% 0.3963%

15.6 91.90% 1.22% 0.1359%

12.9 97.62% 0.34% 0.0579%

15.3.3 90.00% 1.56% 0.5585%

12.6.3 89.05% 1.63% 0.5199%

9.9.3 89.05% 1.56% 0.3796%

9.6.6 82.38% 2.52% 0.1277%

12.3.3.3 82.86% 2.52% 0.9124%

9.6.3.3 82.38% 2.45% 0.6107%

6.6.6.3 80.95% 2.59% 0.3811%

9.3.3.3.3 80.00% 3.13% 0.6047%

6.6.3.3.3 85.71% 2.11% 0.6991%

6.3.3.3.3.3 80.00% 2.99% 1.1610%

3.3.3.3.3.3.3 79.52% 2.79% 0.9540%

applications, such as estimating whether a pallet has
been damaged during transport. For the given num-
ber of maximally seven values, the simple communi-
cation scheme seemingly is robust enough. The differ-
ent classes of sensory information sent in a collective
information transmission are reliably detected, and the
number of the senders, which have sent the same sen-
sory information are estimated with an averaged error
of 2.06% in comparison with seven classes.

Problems of the current testbed are its still low num-
ber of senders when compared to the pallet scenario of
1000 tags. Moreover, conditions in the testbed are pre-
sumably much better than in a pallet. Different packag-
ing materials and larger distances could increase syn-
chronization problems.

7. Conclusions

We outlined a novel approach for communica-
tion between large numbers of senders a single re-
ceiver. This method of collective readout was shown
to be a robust, collective, approximate communica-
tion method for reading out massive amounts of sen-
sor nodes by combining communication with compu-
tation on the channel. We described and tested an im-
plementation to realize collective read-out that can be
realized in an efficient manner on very simple tags.
The experiments suggest the general feasibility of this
mechanism in the economically meaningful scenario

of item-level tagging for next-generation business pro-
cess support.

However, our results have further reaching conse-
quences. While computation on the channel has been
advocated previously on theoretical grounds, its prac-
tical use for intelligent environments was so far ques-
tionable, as experimental results regarding robustness
to noise and inaccurate synchronization under realistic
conditions were missing. The implementation of the
proposed collective transmission method, however, has
shown that statistical methods can be employed to im-
prove tolerance to noise and phase shifts. Future work
should include expanding the testbed with more send-
ing nodes and a more realistic pallet design.

The robustness of collective transmission comes
from the use of random vector encodings of numeri-
cal values. In our example application, collective trans-
mission makes it possible to communicate simultane-
ously with the complete pallet. Collective transmission
does not aim to communicate with individual senders
but with the collective. The transmitted signal, the sum
of all transmissions, is an approximate representation
of a multi-set of values. Future works will further elab-
orate such construction of representations through col-
lective transmission. A disadvantage of the simple ex-
ample scenario is its centralized architecture: intel-
ligent environments with massive amounts of sensor
nodes should not rely on a central processing unit, and
instead employ the spatial distribution of nodes. Ap-
proaches on distributed representations and computa-
tions, such as Vector Symbolic Architectures [10], can
further guide this work. Collective transmission and
read-out could be fundamental building blocks for re-
alizing distributed intelligence.
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