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Abstract. We establish a wireless sensor network that emulates biolog-
ical neuronal structures for the purpose of creating smart spaces. Two
different types of wireless nodes working together are used to mimic
the behaviour of a neuron consisting of dendrites, soma and synapses.
The transmission among nodes that establish such a neuron structure is
established by distributed beamforming techniques to enable simultane-
ous information transmission among neurons. Through superposition of
transmission signals, data from neighbouring nodes is perceived as back-
ground noise and does not interfere. In this way we show that beamform-
ing and computation on the channel can be powerful tools to establish
intelligent sensing systems even with minimal computational power.

Keywords: computational neuroscience, neuronal networks (NN), dis-
tributed adaptive beamforming, artificial intelligence (AI), collaborative
communication, superimposed signals, context recognition.

1 Introduction

Smart spaces are spaces equipped with sensing systems consisting of sensor nodes
of different types linked in a wireless sensor network, which collaboratively pro-
vides intelligent systems applications. For installing smart spaces, it is essen-
tial to address questions of scalability and cost reduction. One idea is to use
lightweight sensor node platforms and employ algorithms for self-organization of
sensor networks. In particular, bio-inspired solutions are promising candidates,
as many biological systems are able to produce complex global behaviour from
simple only locally interacting identical components. Smart spaces fit this de-
scription very well: they consist of a large number of low-cost computing nodes
enabled to sense environmental parameters and to communicate locally so as to
keep transmission power low.

While the number of required nodes can be huge for scenarios such as the
massive deployment of RFID tags for item level tagging, the limited computing
power and physical constraints to the transmission reduce the amount of useful
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computation feasible in such scenario. In particular, the constrained communi-
cation and computational power of individual nodes lower the employment of
algorithms that can be executed on the nodes directly. In addition, the available
low power hinders long distanced transmission and thus the far-range exchange
of information in larger areas.

A biological system that matches these constraints is the nervous system of
the brain. Neurons communicate “wirelessly” locally. Through a complex elec-
trochemical process the synapse of a neuron bridges the gap to the dendrites of
other neurons. Each dendrite in turn is connected to a main cell body, the soma,
where the neuron performs a single, very simple computational task: an addi-
tion of the weighted input signals from all dendrites. The result is sent, through
the axon, a possibly far distance to the synapse of the neuron, where again it
is transmitted to the dendrites of other neurons. This very simple distributed
sensing and processing platform is able to perform astonishingly complex com-
putational tasks in a wide range of biological systems. In this paper, we explore
whether an extremely cost efficient WSN would be able to perform the basic
steps of this process: the transmission from synapse to dendrite, the addition of
weighted signals, and the transmission of the result from soma to synapse.

Our system consists of two types of sensor nodes, which we call dendrite nodes
and synapse nodes. A neuron is a distributed system. It consists of several dedrite
nodes and one synapse node. The dendrite nodes of a neuron obtain signals from
their immediate surroundings and send them collaboratively, using a technique
called beamforming, to the synapse node of the neuron. Beamforming can bridge
farther distances and the overlay of signals at the receiving synapse can be used
to compute the addition function [3].

We thus extended the understanding of smart spaces by considering the space
itself as “alive”, i. e. the installed wireless sensor network including sensory
information processing is functioning as a biological neural system cooperating
with the user.

After discussing the related work in section 4, we detail this structure in
section 2 and explain how neuronal structures can evolve in wireless networks.
Section 3 verifies it in mathematical simulations. In section 5 we draw our con-
clusion.

2 From Collaborative Transmission to Neuronal
Structures

The following sections briefly introduce the biological neuron system, distributed
adaptive transmit beamforming and their joint application to wireless sensor
networks.

2.1 Biological Neuron Systems

The fundamental processor units of a central nervous system represent biologi-
cal neurons interlinked together in a complex manner and providing a biological
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Fig. 1. Schematic representation of neuronal structures into WSN

organism with cognitive capabilities. The communication between neurons and
thus the information processing of, for instance, a sensed environment is accom-
plished by permanently sending out electrical pulses called action potentials or
spikes. The form of an action potential has no encoding information because
all emitted pulses show the same shape. The information is rather encoded in
the number and firing time points of the action potentials. A series of pulses
emitted consecutively by a neuron is called a spike train. The spiking neurons
interact in a dynamic way, so that the degree of firing pulses depends on exciting
or inhibiting the neuron by its connected adjacent neurons. The physiology of
a neuron is divided into three inherent components: dendrites, soma and axon
(cf. figure 1). The dendrites collect signals sent out from other neurons. These
signals pass through to the soma, the cell body containing the cell nucleus, where
the processing of the signals take place. The output signal of the intrinsic pro-
cessing consisting of an emitting spike train is relayed along the axon to other
neurons. The connection between two neurons is called synapse which describes
an actual gap, also known as the synaptic cleft. Here, the signal transmission is
carried out in a complex manner, whereby the pre-synaptic neuron is exciting a
post-synaptic neuron electro-chemically.

For mapping biological neuronal structures onto wireless sensor networks in
order to create smart spaces we adapted wireless communication to neuronal
functioning phenomenologically. Two types of transceiver nodes1 α and β are
working together to emulate the functioning of a neuron and neural networks,
respectively. In particular, neuronal components such as dendrites are realized
by nodes of type α and for the functioning of synapses the nodes of type β are
used. Through collaborative transmission of signals between different types of

1 Applied for different tasks although they feature the same functionality.
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Fig. 2. Schematic illustration of a neuron overlay in a network of wireless nodes utilising
distributed adaptive beamforming techniques

nodes, the soma and axon of a neuron are recreated implicitly. In the modeling
of smart spaces the nodes of type α have the function primarily of sensing and
transmitting the sensory information to an assigned node of type β, which in turn
can transmit a processed information to further nodes. Based on our previous
work in [3] sensor values and other entities can be assigned to binary sequences
initialised randomly, and transmitted to an associated receiver node. In terms
of neuronal encoding the randomly drawn binary sequences correspond to spike
trains a neuron is emitting. The simultaneous transmission of binary sequences
and thus the occurring superposition of signals on the channel corresponds to
behaviour of the dendrites and soma. For extracting the data in superimposed
signals refer to [3]. The characterization so far, a neuronal network can be engi-
neered to achieve reasoning in a spatial distributed sensor network.

2.2 Distributed Adaptive Beamforming for Neuron Overlays

To create a neuron overlay in a wireless sensor network, we map the structures
described above for the neuron system to wireless nodes. As described above, it
generally suffices to identify two types of nodes as α-nodes and β-nodes. With
these nodes we model the information transfer from dendrites.

Generally, we assume that each type β node (synapses) is associated with a
group of type α nodes (dendrites) as depicted in figure 2.

These dendrites are located in the proximity of other type β nodes. Infor-
mation in this network can then be disseminated from type β nodes to nearby
type α nodes associated with other synapses. The dendrites then forward these
stimuli to their synapses which are possibly activated by this process and then
further disseminate information to activate other synapses over their dendrites.

Information dissemination from type β nodes to dendrites in close proximity
can be interpreted as normal omnidirectional broadcast transmission. A problem
that might occur for the information transfer from dendrites to their respective
synapses in this scheme, however, is that due to the omnidirectional information
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transfer among wireless nodes and since dendrites likely transmit simultane-
ously, collisions will occur during transmission. Also, we would have to employ
a sophisticated protocol to identify the correct synapses for each transmission.

However, we can overcome both problems elegantly by utilising distributed
beamforming transmission. When dendrites associated with specific synapses are
synchronised for their carrier phase and frequency, they can act as a distributed
beamformer in their transmission. A signal received from a distributed beam-
former has an improved signal strength at a specific spatial location but fades
into background noise at most other locations [6]. The reason for this property
is that the identical signals transmitted from various transmitters constructively
overlay only at a spatially sharply restricted region since signal path lengths are
mostly unique from the various locations of distributed transmitters. At most
other locations the signals interfere destructively and fade to background noise
provided that a sufficient count of signals is transmitted simultaneously.

We propose to utilise an iterative distributed adaptive beamforming mecha-
nism for wireless sensor networks which was discussed in [6,8,14] to establish the
connection between dendrites and their respective synapses.

Generally, in order to establish a transmission beam from a set of distributed
devices to a remote receiver, carrier phases of transmit signals have to be syn-
chronised with respect to the receiver location and the phase and frequency
offset of the distributed local oscillators. After synchronisation, a message m(t)
is transmitted simultaneously by all transmit devices i ∈ [1..n] as

ζi(t) = �
(
m(t)ej(2π(fc+fi)t+γi)

)
(1)

so that the receiver observes the superimposed signal

ζsum(t) + ζnoise(t) =

�
(
m(t)ej2πfct

n∑
i=1

RSSie
j(γi+φi+ψi)

)
+ ζnoise(t) (2)

with minimum phase offset between carrier signals:

min (|(γi + φi + ψi)− (γj + φj + ψj)|) (3)

∀i, j ∈ [1..n], i �= j.

In equation (1) and equation (2), fi denotes the frequency offset of device i to
a common carrier frequency fc. The values γi, φi and ψi represent the carrier
phase offset of node i as well as the phase offset in the received signal compo-
nent due to the offset in the local oscillators of nodes (φi) and due to distinct
signal propagation times (ψi). ζnoise(t) denotes the noise and interference in the
received sum signal. We assume additive white Gaussian noise (AWGN) here.
With RSSi we describe the received signal strength of device i.

3 Results

To show the feasibility of the proposed neuronal overlay, we utilised a matlab-
based numerical simulation environment in which collaborative nodes are



278 S. Sigg et al.

synchronised for their phase and simultaneous transmission of various neigh-
bouring and interleaved neuron structures is demonstrated.

In these simulations, 180, 240, 300 or 500 type α transmit nodes are placed
uniformly at random on a 30m × 30m square area. These nodes are randomly
allocated to 2, 3, 4 or 5 type β receiver nodes – the synapses – which are addition-
ally placed in this area. Receiver and transmit nodes are stationary. Frequency
and phase stability are considered perfect.

In these simulations, the groups of nodes first synchronise their carrier phase
in 6000 iterations to their synapses with the iterative carrier synchronisation de-
scribed in [6,8,14]. Afterwards, the nodes simultaneously transmit an amplitude
modulated binary sequence. Although all sequences are then superimposed at
the type β nodes, we can show that due to the beamforming transmission the
signal designated for a specific type β node is dominant at this node while the
superimposition of other signals results in less dominant background noise.

Nodes transmit at a base band frequency of fbase = 2.4 GHz with a transmit
power of Ptx = 1 mW and a transmission gain of Gtx = 0 dB. The type β nodes
have an antenna gain of Grx = 0 dB. Random noise power was −103 dBm as
proposed in [1]. For the pathloss between transmit and receive nodes we utlised
the Friis free space equation [10]

Ptx

(
λ

4πd

)2

GtxGrx. (4)

We derived the median and standard deviation from 10 identical simulation
runs for each distinct configuration. Signal quality is measured by the Root of
the Mean Square Error (RMSE) of the received signal to an expected optimum
signal as

RMSE =

√√√√ τ∑
t=0

(
ζsum + ζnoise − ζopt

)2
n

. (5)

Here, τ is chosen to cover several signal periods.
The optimum signal is calculated as a perfectly aligned and properly phase

shifted received sum signal from all transmit sources. For the optimum signal,
noise is disregarded. In the following sections we detail the impact of several
environmental parameters on the performance of the transmission.

3.1 Count of Neurons

We altered the count of type β nodes utilised in the simulations from 2 over
3 and 4 to 5 nodes. Figure 3 illustrates the relative BER for changing number
of neuron overlay groups. The figure depicts the improvement of the median
BER normalised on the lowest BER achieved in the simulations with only two
synapses. The value 1 represents the lowest BER transmission achieved. We ob-
serve that the beamforming transmission quality gradually deteriorates with in-
creasing number of neurons. This is not surprising since for each neuron overlay,
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Fig. 3. Relative improvement of the median BER for increasing count of neuron groups

a distinct signal sequence is modulated onto the mobile carrier. With increas-
ing count of synapses nodes, therefore the count of different signals which are
superimposed rises. Similarly, the interference rises at all respective synapses
nodes.

3.2 Count of Transmit Nodes

Also, we altered the count of transmit nodes. Generally, we expect that the BER
decreases with increasing node count, since then more interference signals are
superimposed from an increased count of locations so that potentially the su-
perimposed sum signal ζsum better approximates random noise. Figure 4 depicts
the results from these simulations. The figure depicts the situation for three
type β nodes with 180, 240, 300 and 500 type α transmit nodes. For this sce-
nario we could not observe a significant trend with the count of nodes utilised.
This means that already groups of about 60 nodes are sufficient to significantly
perturb the superimposed sum signal at non-correlated receive nodes in order to
allow simultaneous transmission of neuron overlays.

3.3 Location of Receivers

The location of receivers might impact the signal quality for simultaneous trans-
mission. Since type α transmit nodes are synchronised in phase to achieve the
most coherent superimposition in the proximity of the respective type β node,
the interference also increases for nearby nodes. We study the impact of this
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property on the BER of the transmitted signal sequences by comparing the signal
quality achieved for random placement of synapses nodes with simulations in
which the synapses nodes are spatially maximally separated. Figure 5 depicts
the results from this simulation. We altered the count of type β nodes from 2
over 3 and 4 to 5. The count of transmit nodes in distinct simulations was set
to 180, 240 and 300 respectively.

We observe that generally, the normalised median BER for the scenarios with
fixed locations of synapses nodes achieve an improved BER. Occasionally, how-
ever, the performance in the scenarios with random receiver placement is slightly
better. This is due to the random positioning of receivers which also allows for
optimum positioning of type β nodes and receiver nodes. With increasing count
of simulations, however, this effect becomes less significant. We can see this for
instance from figure 5d that shows the average performance over all simulations.

3.4 Transmission Data Rate

Finally, we studied the impact of the data rate at which the symbol sequences are
modulated onto the wireless carrier by transmit nodes. Naturally, we expect the
BER to rise with increasing data rate [13]. Figure 6 confirms this expectation.
The figure shows the normalised median BER for various data rates with respect
to the count of transmit nodes or the count of neuron overlays. In both cases
we observe that the BER increases with increasing data rate. Consequently, it
is possible to counter an increasing BER due to other environmental effects by
decreasing the transmission data rate.

180 240 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Count of type α nodes

M
ed

ia
n 

B
E

R

Deterioration of BER with increasing count of type α transmit nodes

Fig. 4. BER for increasing node count



Neuron Inspired Collaborative Transmission 281

2 3 4 5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Count of type β nodes

no
rm

al
is

ed
 B

E
R

BER for fixed or random location of type β nodes (180 type α nodes)

Fixed location of type β nodes
Random location of type β nodes

(a) BER for different count of neuron over-
lays; 180 transmit nodes.

2 3 4 5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Count of type β nodes

no
rm

al
is

ed
 B

E
R

BER for fixed or random location of type β nodes (240 type α nodes)

Fixed location of type β nodes
Random location of type β nodes

(b) BER for different count of neuron over-
lays; 240 transmit nodes.

2 3 4 5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Count of type β nodes

no
rm

al
is

ed
 B

E
R

BER for fixed or random location of type β nodes (300 type α nodes)

Fixed location of type β nodes
Random location of type β nodes

(c) BER for different count of neuron over-
lays; 300 transmit nodes.

2 3 4 5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Count of type β nodes

no
rm

al
is

ed
 B

E
R

BER for fixed or random location of synapses (180, 240 and 300 dendrites)

Fixed location of type β nodes
Random location of type β nodes

(d) BER for different count of neuron
overlays; average of all counts of transmit
nodes.

Fig. 5. BER for different count of neuron overlays for deterministic and randomly
placed synapses nodes and various counts of transmit nodes

4 Related Work

Traditional neural models are distinguished mainly into three different gener-
ations [4], i. e. the McCullouch-Pitts neurons referred also as perceptrons or
threshold gates (first generation), the feedforward and recurrent sigmoidal neu-
ral nets assigned to the second generation and the spiking neural networks (SNN)
termed as the third generation. While the first generation of neural models fea-
tures binary input and output signals, and calculate every boolean function, the
neural models of the second generation are able to compute beside arbitrary
boolean functions, as well to approximate any continuous mathematical func-
tion. In addition, these kind of neural networks are characterized by employing
learning algorithms such as the backpropagation. The third class of neuronal
models represent spiking neural networks, which simulate real biological neu-
ral systems. The common feature of all described generations is that all neuron
models are applied on computer hardware of the von Neumann architecture. In
contrast, we simulated biological neuronal structures in wireless sensor networks
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using simple transceiver nodes to emulate behavior of biological neurons. The
communication and processing of spiking neural signals is based on collaborative
transmission and simple on-off-shift-keying.

Algorithms for distributed adaptive beamforming are distinguished by closed-
loop phase synchronisation and open-loop phase synchronisation techniques [6].
Closed-loop carrier synchronisation can be achieved by a master-slave
approach [15]. Transmit nodes then send a synchronisation sequence simul-
taneously on code-divisioned channels to a destination node. The destination
calculates the relative phase offset of the received signals and broadcasts this
information to all transmitters that adapt their carrier signals accordingly.

Due to the high computational complexity burden for the source node to
derive the relative phase offset of all received signals, this implementation is not
suggestive in some applications for wireless sensor nodes.

Alternatively, a Master-slave-open-loop synchronisation can be applied [5].
In this method, however, the generally high complexity for the nodes is shifted
from the receiver node to one of the transmit nodes. Therefore, this approach
also suffers from its high computational load.

A simpler and less resource demanding transmit beamforming scheme to syn-
chronise carrier signal components in phase and frequency was proposed in [9].
This computationally cheap carrier synchronisation utilises a one-bit feedback
on the achieved synchronisation quality that is transmitted in each iteration
from a remote receiver [6,7]. The central optimisation procedure of this process
consists of n devices i ∈ [1, . . . , n] randomly altering the phases γi of their carrier
signal ζi(t) in each iteration. The carrier synchronisation process for distributed
adaptive transmit beamforming is then generally described by a random search
method [8,11,12]. Since a decreasing signal quality is never accepted the method
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eventually converges to the optimum with probability 1 [8]. The authors of [11]
demonstrated in a case study that the method is feasible to synchronise frequency
as well as phase of carrier signal components. In [8] it was determined that the
expected optimisation time of this approach for a network of n transmit nodes is
linear in n when in each iteration the optimum probability distribution is chosen
for the random decision taken by the nodes. For a fixed uniform distribution over
the whole optimisation process, a sharp asymptotic bound of Θ(n · k · logn) was
derived for the expected optimisation time [14]. Here, k denotes the maximum
number of distinct phase offsets a physical transmitter can generate.

5 Conclusion

We presented a method to build a neural network overlay over a wireless sensor
network. In particular, we utilised an iterative, computationally cheap method
for carrier synchronisation among distributed nodes to establish a synchronised
transmission beam among nodes allocated to one neuron in the neural network
overlay. Due to beamforming, communication can be established simultaneously
in several neurons in the overlay network. With this construction we are able to
establish smart spaces capable of executing complex computations on computa-
tionally limited wireless nodes. In mathematical simulations, we demonstrated
how a cost efficient wireless sensor network is able to perform the transmission
from synapse to dendrite, the addition of weighted signals and the transmission
of the result from the soma to synapse. In particular, the impact of the count of
synapses, the count of dendrites, the location of dendrites and the transmission
data rate impacts the bit error rate of the simultaneous superimposed transmis-
sion from dendrites to several respective synapses.
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