Towards a Decision Support Architecture for Digital Preservation of Business Processes

iPRES 2012 - Toronto, Canada

Alex Neumann1, Hossein Miri1, John Thomson2, Goncalo Antunes3, Rudolf Mayer4, Michael Beigl1

1Karlsruhe Institute of Technology, Karlsruhe, Germany
2Caixa Magica Software, Lisbon, Portugal
3INESC ID, Lisbon, Portugal
4Secure Business Austria, Vienna, Austria
Agenda

• Motivation and Goal

Introduction

• Architecture

Decision Support

• Business Processes and their Environments

Model

• What to preserve?

Use Case

• Summary and Outlook

Conclusion
Introduction

Motivation and Goal
- Business Continuity (means long-term)
 - Business depends on many processes
 - Administration, Management, Engineering, Science, ...
 - Processes describe the behavior of entities in domains
 - Define the context in which digital objects are generated, manipulated, or executed.
 - Processes are at risk of going down

- Time-Resilient Business Processes
 - Enabled by digital preservation of processes
 - Preserve all relevant processes and their relevant context
 - Technical infrastructure and standards
 - People (roles, concerns, responsibilities, ...)
 - ...
Preservation Process

Process Preservation Decision Events
• When to preserve, and why?

Process Preservation Planning
• What to preserve, and why?

Process Preservation Execution

Process Re-Deployment
• What to re-deploy, and why?
- Involved arguments need to be preserved besides decisions
 - Effective tool in business
- Answering problems is (in worst case) process-specific
 - What to preserve?
 - Different process dependencies are relevant
- Answer problems as automated as possible for cost-efficiency
 - Problems are frequently evaluated
One Generic Tool

- Interpret challenges as (generic logic-based) reasoning problems
 - Process-specific formulation of problems
 - Logically explainable solutions using a generic, sound and complete logic calculus

- One tool, which is easy to preserve
 - Operates on a well-documented knowledge representation and according to a well-documented calculus
 - Future will benefit from our system being able to explain its (process-specific) reasoning on a step-by-step base
 - e.g. based on inference rules, as a forward chainer would
Decision Support

Architecture
Decision Support Architecture

- Context Model (Instance)
 - Describes business processes and their context
 - OWL 2 DL proposed for potentially required expressiveness
- Formulate problems on these models
 - OWL 2 DL
 - SPARQL
- Apply off-the-shelf reasoners (and solvers) to solve problems
 - Pellet
 - APT-BPO
Model

Business Processes and their Environment
Context Model

- Describes business processes and their context
- Processes
 - Time Condition/Event Structures (Time Petri Nets)
 - Models causal flow and temporal constraints
 - Aligned with other models, such as WF4Ever (wrt causal flow)
 - Aligned to process models in provenance models, such as SHAMAN Context Model and PREMIS (wrt causal flow)
- Context
 - Ontology (proposed OWL 2 DL)
 - Model classes, individuals, relations and rules as generic process context framework
 - Aligned with other models, such as SHAMAN CM
- Get training and test data
- Get ground truth
- Extract features
- Build classifier and perform classification
Process Context (1)

- Process Specification
 - Inputs and Outputs
 - URLs, Files, Documents, Streams, Constants, Classifier, Classifications
- Services (purple/blue)
- Software
 - Platform (Taverna)
 - Libraries (WEKA, SOMLib)
- Specifications
 - ARFF, REST, HTTP, HTML, MP3, Algorithms
Process Context (2)

Processes

Services

Software

Hardware

...Other aspects...

SOMLib

Taverna

JVM

WEKA
Use Case

What to preserve?
- Process-specific notion of what is required by a process to be preserved and successfully re-deployed

- Requirements scopes
 - Entire domain of process preservation
 - Based on a repository
 - Sub-domains of process preservation
 - Based on a repository, or a digital preservation engineer

- Requirements types
 - **Required conditions**
 - What dependencies are at least **required** for re-deployment?
 - **Completeness conditions**
 - What dependencies need better to be **complete** for re-deployment?
Music Classification Process

- Model instance built using
 - Data extractors/crawlers
 - Expert knowledge
- Process preservation requirements
 - Need causal behavior equivalence only
 - **Required conditions**
 - Preserve anything but HW
 - **Completeness conditions**
 - All related software is preserved
What is required to be preserved?
- Preserve anything but hardware
 - Software, Specifications, Services, Inputs/Outputs

Is the model complete?
- All related software is preserved
 - SW completeness condition not yet satisfied
• Populate the context model
 • Extraction tools
 • Expert knowledge

• Specify requirements of preservation setting
 • Required conditions
 • Completeness conditions

• Use reasoning engine
 • Requirements satisfied?
 • What parts of the model are required to be preserved?
 • Are these parts complete?

• Inspect and adapt the model to requirements

• Address required conditions
• Address completeness conditions, and sign off model parts

Workflow
Conclusion

Summary and Outlook
Generic architecture to assist in digital preservation of business processes
- Based on off-the-shelf reasoners (and solvers) that operate according to generic logic calculi
 - Logically explainable answers to problems
 - Tools and arguments are easily preservable
- Addressed three decision support problems (using this architecture)
 - Talk
 - What to preserve? (Pellet reasoner, N2EXPTIME-complete)
 - Paper
 - When to preserve? (Pellet reasoner, N2EXPTIME-complete)
 - What to re-deploy? (APT-BPO solver, NP-complete)
Problem: Expressiveness of our ontology language (OWL 2 DL) poses high computational complexity in ontology reasoning
 - Satisfiability and querying is N2EXPTIME-complete

Future: Evaluation of the architecture in use cases of the TIMBUS project will determine
 - Practical feasibility of OWL 2 DL in the domain of business process preservation
 - Whether we can restrict expressiveness of used language
Towards a Decision Support Architecture for Digital Preservation of Business Processes

iPRES 2012 - Toronto, Canada

Alex Neumann¹, Hossein Miri¹, John Thomson², Goncalo Antunes³, Rudolf Mayer⁴, Michael Beigl¹

¹Karlsruhe Institute of Technology, Karlsruhe, Germany
²Caixa Magica Software, Lisbon, Portugal
³INESC ID, Lisbon, Portugal
⁴Secure Business Austria, Vienna, Austria