cardTAP: The First Theorem Prover on a Smart Card
— System Description —

Rajeev Goré!, Joachim Posegga?, Andrew Slater! , Harald Vogt?

! Automated Reasoning Project, Australian National University, 0200, Canberra
2 Deutsche Telekom AG, Technologiezentrum, 1T Security, D-64276 Darmstadt

Abstract. We present the first implementation of a theorem prover
which runs on a smart card. The prover is written in Java and imple-
ments a dual tableau calculus. Due to the limited resources available on
current smart cards, the prover is restricted to propositional classical
logic. It can be easily extended to full first-order logic.

The potential applications for our prover lie within the context of security
related functions based on trusted devices such as smart cards.

1 Smart Cards: the Secure PC of Tomorrow

Smart cards are currently evolving into one of the most exciting and most signif-
icant technologies of the information society. Current smart cards on the market
are in fact small computers consisting of a processor, ROM and RAM, an operat-
ing system, a file system, etc. Although their resources are still quite restricted,
continuous advances in chip manufacturing will soon enable smart cards with
32 bit processors and up to 128 KB of memory. Manufacturers are also think-
ing about integrating small keyboards and L.CD displays on these plastic cards.
Thus, the next generation of smart cards will be as powerful as PCs were a few
years ago.

The evolution of smart card technology resembles the development of com-
puter technology over the last 20 years: the separation of “physics” and “logic”.
While early computers had to be programmed in machine language because each
bit of memory and each instruction cycle was valuable, the increase of resources
and processing power made it affordable to trade resources for higher level pro-
gramming concepts and languages. This separation of software and hardware
was the basis for the spread of computers into everyday life during this decade.

The same phenomenon is about to take place in smart card technology: as
resources and processing power increase, it will become affordable to neglect the
optimal use of the card processor and memory. The most promising move in this
direction are Java smart cards, where a Java virtual machine is implemented
inside the card. The software determining the function of the card is no longer
tied to the particular card, but multiple applications can be loaded onto, and
removed from, the card as desired.

The primary purpose of smart cards will continue to be security-related ap-
plications since they will serve as a trusted device for their owner. The most

important applications to date are of a cryptographic nature like authentication
and encryption, eg for electronic cash. Future applications running on more com-
plex cards will be able to carry out more complex operations so that the smart
card of the future will be a secure, personal computer.

Current smart cards have security-related applications hard-wired onto them.
Future smart cards will serve multiple purposes and will be adaptable by down-
loading one or more applications. Interactions between such applications, and
between the card and the outside world therefore become non-trivial. Formal
logic is not only well-suited for modelling such complex interactions but is also
ideal for describing a given security model. Consequently, a trusted, secure, per-
sonal device should be able to perform logical reasoning to ensure that the card
complies to its owner’s security model. A concrete example is the use of formal
logic in the context of proof-carrying code [1].

Here we outline the first successful implementation of a theorem prover on a
Java smart card.

2 Implementation Details

card7'P is a theorem prover for propositional logic that uses a dual tableaux
method based on leanT'P [2]. card 7P was specifically designed to reside on
a smart card; the program executable size is less that 2 KB, and the stack
usage, heap space and allocated memory is minimal. To achieve this, card 7P
naively simulates Prolog’s run time stack and backtracking environment using
recomputation. The trade off is efficiency: some work must be repeated since
we cannot save all of the prover’s previous states.! The theorem prover resides
on the smart card as a “cardlet”? which can down-load a formula from a card
reader and determine its theoremhood.

Due to space constraints we only allow formulae in Negated Normal Form
using Reverse Polish Notation. The current prover is limited by statically de-
fined restrictions on the length and complexity of the formula determined by
the limited memory resources of the smart card [3]. Specifically, a formula can
contain up to 26 distinct propositional variables, at most 20 disjunctions, and at
most 20 nested conjunctions, with a total length of 126 symbols. Future cards
with greater resources will be less restrictive.

Formulae are written to an EEPROM file; excess EEPROM space is used as
virtual memory. The efficiency of accessing the formula is somewhat enhanced
by using a smaller buffer in local memory as a small “window” into the formula.

The prover traverses each path from the root of the proof tree to some leaf.
If every leaf is closed then the formula is unsatisfiable. Typically a dual tableaux
theorem prover is capable of remembering or copying information about some
point in the proof tree before it takes a branch at some conjunction. By doing so

' Although backtracking is not necessary for propositional classical logic, card TP has
been implemented for extensions to other logics.

2 licati i t card lled cardlet
Java applications running on a smart card are called cardlets

it can efficiently return to that branching point and traverse the alternate path.
card 7P does not have enough memory space to arbitrarily store a “state” for
some branch. As an alternative, card TP stores a simple binary map of the paths
taken to implement a depth first traversal of the proof tree, but is thus required
to return to the root to traverse its next path. In doing so it reaccumulates the
state information it had previously acquired at the last branching point in the
proof tree. Disjunctions are also mapped so that if the prover reaches a leaf node
leading from some conjunction, it may look in the disjunction map to determine
whether there is a disjunct to process that may result in the current path closing.
If a disjunct is available then that subformula may be immediately processed as
if it were attached to the open node. Each path, from root to leaf, generates its
own disjunction map as the path is traversed. Each path also generates state
information regarding the variables in the formula as they are identified.

3 Experimental Results

We successfully ran card7'P on a smart card provided by Schlumberger [3] im-
plementing JavaCard APT V1.0 [4]. This card handles applications of up to 2.8K
and offers approximately 200 bytes of main memory during run time. Our test
formulee consisted of 17 theorems of propositional logic [5] converted into negated
normal form and into reverse polish notation. We also tested some non-theorems,
obtained by mutating some of these 17 theorems.

Each formula was loaded onto the card individually and tested using the proof
procedure described above. The interaction was performed through LoadSolo, a
simple tool for communicating with the card, which came with the Cyberflex
Development Kit [3]. cardT'P returned an answer code indicating whether or
not the formula was a theorem. All measurements were made by hand: each
theorem was proved 3 times, the fastest and the slowest times were discarded.
The following run-times include communication overhead:

|Pelletier’s 17 theorems: ||Non—theorems: |
Pl 219s |P2 6.9s P3 2.0s |[N1 &-pp 2.0s
P4 221s |P5 8.7s P6 1.7s [|[N2 +4pp 24s
P7 1.7s P8 3.2s P9 27.6 s||N3 p 18s
P10 1:33 min{P11 7.0 s P12 - N4 -p 18s
P13 1:50 min|P14 2:40 min|P15 22.1 s||N5 +&&p-q&-qp&+-pq+qp 7.2 s
P162.0s P17 - N6 +&+p-q&-qp&+-pq+qp 25.3 s
N7 +&pp&p-p 2.7s
N8 ++-pq+q-p 5.0s
N9 +p&+-pqp 6.7 s
N10 +&pq+&-p-q+&-p-q&p-q 7.3 s

The card and associated development kit we used was an early prototype
obtained from Schlumberger. Timing constraints enforced by the card either
raised an exception or garbled communication during some of the longer compu-
tations. It is not clear if this is caused by an error in the card, the card reader,

some related library, or the user interface application. ® These problems could
be partially solved by interspersing commands which send data from the card to
the reader. These modifications are sufficient for proving the shorter theorems,
theorems P10 and P13, but for the larger ones, like theorem P14, additional
modifications had to be made. All modifications concern only additional com-
mands for communication. Theorems P12 and P17 could not be proved with any

version of ca rdTAP.

3.1 Conclusion and Outlook

The current version of card 7P is a propositional logic theorem prover written in
Java. The methodology is essentially the same as that of the Prolog first order
logic theorem prover leanT'P. With greater available resources on smart cards,
an extension of card7'P to first-order logic 1s straightforward. The simplicity
of the Java code is a direct result of the tableau methodology which nicely
partitions the problem into multiple branches, each of which can be explored
using the limited resources individually. In contrast, “global” procedures such
as the Davis-Putnam algorithm or resolution would not have been as well suited
since they accumulate information rather than partitioning it.

References

1. G Necula and P Lee. Proof carrying code. Technical Report CMU-CS-96-165,
Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, September
1996.

2. Bernhard Beckert and Joachim Posegga. leanTAP: Lean tableau-based deduction.
Journal of Automated Reasoning, 15(3):339-358, 1995.

3. Schlumberger Inc. Cyberflex. http://www.cyberflex.austin.et.slb.com, 1997.

JavaSoft Inc. Javacard API. http://www. javasoft.com/products/javacard/. 1997.

5. Francis J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191-216, 1986.

=~

% The card7’4P program itself has been independently run in a simulation environment
where these problems did not surface.

