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Abstract. We present the �rst implementation of a theorem prover

which runs on a smart card. The prover is written in Java and implements

a dual tableau calculus.1 Due to the limited resources available on cur-

rent smart cards, the prover is restricted to propositional classical logic.

It can be easily extended to full �rst-order logic. The potential applica-

tions for our prover lie within the context of security related functions

based on trusted devices such as smart cards.
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1 Smart Cards: the Secure PC of Tomorrow

Smart cards are currently evolving into one of the most exciting and most signif-
icant technologies of the information society. Current smart cards on the market
are in fact small computers consisting of a processor, ROM and RAM, an operat-
ing system, a �le system, etc. This miniature computer resides within a tamper
proof chip attached to a plastic card such as a credit card. The computer only
lacks the typical I/O devices, but can communicate with a smart card reading
machine, and has a small EEPROM (Electrically Erasable Programmable Read
Only Memory) space analogous to computer disk space. Although their resources
are still quite restricted, continuous advances in chip manufacturing will soon
enable smart cards with 32 bit processors and up to 128 Kb of memory. Manufac-
turers are also thinking about integrating small keyboards and LCD displays on
these plastic cards. Thus, the next generation of smart cards will be as powerful
as PCs were a few years ago.

The evolution of smart card technology resembles the development of com-
puter technology over the last 20 years: the separation of \physics" and \logic".
While early computers had to be programmed in machine language because each
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bit of memory and each instruction cycle was valuable, the increase of resources
and processing power made it a�ordable to trade resources for higher level pro-
gramming concepts and languages. This separation of software and hardware
was the basis for the spread of computers into everyday life during this decade.

The same phenomenon is about to take place in smart card technology: as
resources and processing power increase, it will become a�ordable to neglect the
optimal use of the card processor and memory. The most promising move in
this direction is Java smart cards, where a Java virtual machine is implemented
inside the card. The software determining the function of the card is no longer
tied to the particular card, but multiple applications can be loaded onto, and
removed from, the card as desired.

The primary purpose of smart cards will probably continue to be security-
related applications since they serve primarily as a trusted device for their owner.
The most important applications to date are of a cryptographic nature like au-
thentication and encryption, e.g. for electronic cash. Future applications running
on more complex cards will be able to carry out more complex operations so that
the smart card of the future will be a secure, personal computer.

Current smart cards have security-related applications hard-wired onto them.
Future smart cards will serve multiple purposes and will be adaptable by down-
loading one or more applications. Interactions between such applications, and
between the card and the outside world therefore become non-trivial. Security
issues arise when new and hence untrusted code is introduced to the device, and
when known code on the device is requested to perform a sequence of transac-
tions that could result in a violation of security. In both cases we can test for
malicious intent by verifying that insecure situations cannot eventuate. Formal
logic is not only well-suited for modelling such complex interactions but is also
ideal for describing a given security model. Consequently, a trusted, secure, per-
sonal device should be able to perform logical reasoning to ensure that the card
complies to its owner's security model. A concrete example of the use of formal
logic for the purposes of code-safety has been given in the context of proof-
carrying code [1]. The signi�cance of implementing a theorem prover capable
of operating on a smart card is that we may determine the viability of using
techniques from automated deduction to absolutely ensure security in situations
where the 
exibility of advanced smart card technology thwarts their popular
use as a trusted device. At the practical level, untrusted code veri�cation would
require an automated deduction system, using an appropriately customised logic,
to prove that a sequence of Java byte-code complies with a given security model.
Additionally, we suggest that these small veri�cation systems on smart cards will
have applications for testing the legality of given input command sequences for
a given smart card application and a particular owner's security model.

Automated theorem proving in classical logics is now a mature �eld, but
automation of theorem proving in non-classical logics is a thriving �eld in arti-
�cial intelligence research. Extensions of our system will allow veri�cation using
communication protocols expressed in modal and authentication logics [2].

The challenge to implement a veri�cation system for a smart card is to iden-



tify theorem proving techniques which will function e�ciently in the limited time

and space resources on these small machines. Here we describe cardTAP , the �rst
successful implementation of a theorem prover on a Java smart card.

2 Implementation

cardTAP is a theorem prover that uses a dual tableaux method based on leanTAP

[3]. leanTAP is written in Prolog but cardTAP is written in Java and must there-

fore function without the underlying backtracking engine. cardTAP is designed
to reside on a smart card with minimal resources, hence it is required that the
program executable size be small, in this case less than 2 Kilobytes. Addition-
ally, the stack usage is minimal and heap space, or allocated memory, is also

minimal. To implement a proof procedure under these restrictions, cardTAP sim-
ulates a recursive environment powerful enough to perform dual tableaux. While

backtracking is not necessary for propositional classical logic, cardTAP has been
implemented for extensions to other logics. The trade o� for using this design
is e�ciency: some work must be repeated as we cannot save all the information
computed from intermediate states during the proof procedure. The resulting
theorem prover is small enough to reside on the smart card as a Java applet that
can be commanded, �rst to download a formula, and second to determine that
formula's theoremhood, using a machine that can communicate with the card.

2.1 The Veri�cation Method: Tableaux

The tableaux method of automated theorem proving is a syntactic refutation sys-
tem that results in a natural depth �rst search of a proof tree [4]. Each \node" in
the proof tree consists of a set of formul�. A set of tableaux rules speci�es how
the tree may be constructed, and these rules guide the transformation of sets of
formula from a parent node to children. A tableaux may also be described as
an \upside-down left-handed sequent system" [5]. The tableaux method begins
with a single node (the root) containing the negation of the formula to be tested
for theoremhood. If every branch of the ensuing tableaux leads to a contradic-
tion then the root node is deemed unsatis�able. Thus the original formula is a
theorem. The dual-tableaux method avoids the initial negation operation and
begins with the formula itself. In order to do this the method provides a \dual"
set of tableaux rules to construct the proof tree. Figure 1 shows these rules for
the binary operators AND and OR. Rules for their negations may be created by
using the DeMorgan laws.

A path in the proof tree terminates when no more rules can be applied. The
�nal node of such a path contains a set of literals; that is, a set of atomic formula
and negations of atomic formula. The initial formula is falsi�able, and hence a
non-theorem, if we can consistently assign \false" to each literal. If a set contains
p and �p then such an assignment is impossible, hence we \close" the path when
the set contains a tautology, i.e., there is some atomic formula p such that both



(AND)
[A&B]

[A] left child j [B] right child
(OR)

[A _B]

[A;B] only child

Fig. 1. Some Dual Tableaux Proof Tree Generation Rules

p and �p are in the set. If every path in the proof tree for a formula closes then
that formula has been veri�ed as a theorem.

2.2 Input Formula Speci�cations

Like leanTAP , cardTAPonly accepts formul� in Negated Normal Form (NNF).
This means that negation symbols must be \pushed in" toward the atomic
propositions, and this can be done with a simple polynomial-time algorithm.

cardTAPalso uses Reverse Polish Notation (RPN). The RPN format reduces the
amount of space required for the description of the formula and makes the parsing
process simpler. Additionally, simple optimisations can be performed e�ciently
when translating any given propositional formula into NNF RPN. Some of the
excess EEPROM space not used by executable code is used as virtual memory
to store the given formula. Once the formula is downloaded onto the Smart Card
it is seen as an EEPROM �le. Since EEPROM access is slow, the e�ciency of
accessing the formula can be enhanced by using a small bu�er, or cache, in local
memory as a \window" into the formula.

2.3 Prover Execution

The theorem proving process takes advantage of the RPN format of the formula
by viewing it as the parse tree for that formula. The dual tableaux algorithm
allows us to scan the parse tree and use a simple strategy to generate and
traverse the tableaux proof tree. By requiring the formula to be in NNF the
only branching tableaux rule needed is one for conjunctions. Therefore, in the
generated proof tree, branches only occur at conjunctions and the arguments to
disjunctions are interpreted as a list of additional subformul� to be processed.
The prover traverses each path from the root of the proof tree to the leaves.
During each traversal state information about the propositional variables for
that path is accumulated and checked for path closure i.e. a tautology in the
path. The state information is reset before traversing any path.

Since the method is tree based it could be solved nicely with recursion, how-
ever this prover cannot be recursive as it would quickly exhaust the available
stack space. There are also space restrictions on how much information we can
retain at any step in the veri�cation. Typically a dual tableaux theorem prover
is capable of remembering or copying the accumulated state information at the
conjunction nodes in the proof tree before it takes the �rst branch. By doing so
it can return to that branching point and traverse the alternate path using the



previously saved state information. cardTAP does not have enough memory space

to arbitrarily store a `state' for every branch point. cardTAP simulates the depth
�rst traversal by requiring that every possible path in the proof tree, from root
to leaf, is traversed separately, and that during each traversal the state informa-

tion for that path is accumulated. To achieve this cardTAP maintains a simple
binary map of the conjunctions encountered in the proof tree. This conjunction
map allows the prover to be directed through each branching possibility, in a
left to right order, and thus explore every path iteratively by using the map.

Disjunctions do not cause branching in the proof tree, however every ar-
gument must be made available while searching for termination in a path. The
strategy here is to process the �rst disjunct and save the position of the second in

case it is needed later. cardTAP maintains a disjunction list so that, if the prover
reaches a node which does not close or branch, it can search the disjunction list
for further subformul� to process. Each such subformula is the second argument
to some disjunction previously encountered in the current path. If a disjunct
is available then that subformula may be immediately processed as if it were
attached to the current node. The list actually holds the location of subformul�
so that they may be easily found within the main formula. Each path, from root
to leaves, must generate a new disjunction map as the path is traversed.

The proof tree traversal is performed within a loop which terminates when:

(i) A path ends without closure and no remaining disjunctive arguments re-
main to be processed. Since the path has not closed during the traversal the
formula is a non-theorem.

(ii) All paths in the proof tree have been traversed (the conjunction map is
exhausted), and have closed. In this case the formula is a theorem.

2.4 Example Execution

The following example illustrates how the algorithm tests the formula (a&b&c)+
(�a+�b+�c), which is derived from a DeMorgan equivalence. Here we use the

same notation as is accepted by cardTAP where Boolean AND is &, Boolean OR
is +, and negation is �. Note also that our NNF RPN notation also assumes

that both AND and OR are binary operators. The formula we give to cardTAP is
+&&abc++� a� b� c. While we could not a�ord the resources to implement
higher level data structures, such as lists, we will use these concepts in the
example to simplify the description and note that they were easily simulated
with equivalent non-recursive data structures in the actual code.

The �rst path taken by cardTAP is illustrated in Figure 2 by the unbroken
arrows. We will call the conjunction map the AND map, and use it as a list
containing directions of either Left orRight. The list storing secondary arguments
to disjunctions is called the OR list and this stores the position of the disjunctive
subformul� that we may want to process later. Before the process starts both
the AND map and the OR list are empty, and the state information indicates
that no propositional variables have been encountered. The �rst token is + so the
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Right SideLeft Side

++-a-b-c

+-a-b

-a

taken from OR list

place index to `-c' in OR list and process `+-a-b'

place index to `-b' in OR list and process `-a'

this branch closes on variable `a'

state and OR list reset and AND map updated to [Left, Right]

Fig. 2. The traversal of the �rst path in the proof tree for the formula

+&&abc++� a� b� c. The �rst path follows the default AND map, [Left, Left ].

second argument in the disjunction, which is the subformula ++�a� b� c, has
it's position in the formula placed in the OR list. This leaves the �rst argument
of the main disjunction, &&abc, to be processed immediately. This subformula
is a conjunction of &ab and c. Since the tree traversal defaults to taking the
left branch �rst we record the action by adding this direction to the end of the
AND map (initially empty). We then move along the formula to process the
�rst conjunct &ab. Again a conjunction is encountered and we process the left
branch and record the action by placing the direction taken (Left) at the end
of the AND map. We are now left with the literal token a which is recorded
as being encountered in our state environment. It is obvious that we cannot
continue the traversal, and that the proof tree has not closed yet, so we must
refer to the OR list. The OR list holds one element which we take out and
proceed processing again in a similar nature. In this case, however, every time
we encounter a disjunction we place an index to the second argument in the OR
list and then process the �rst argument. Eventually we �nd the literal token �a
which closes this path.

Since the �rst path closed and the AND map is non-empty we must evaluate
further possible paths to complete the proof tree. To ensure that all paths are



taken the AND map is updated in the following way:

(i) Remove all Right entries at the end of the list, since we now have investigated
these paths.

(ii) If entries remain then change the last entry, which must be Left, to Right.
(iii) If no entries remain in the AND map then we are done and the formula is a

theorem.

Note that in case (iii) we are left with a theorem since the algorithm terminates
with a result of failure as soon as we reach the end of an open path. Each time
we begin traversal of a new path we reset the OR list, reset the propositional
variable state information, but retain the AND map. When a path is traversed
the AND map is used as a guide through the tree, always defaulting to left when
a new conjunction is encountered.

3 Experimental Results

The theorem prover was developed and initially tested in a simulated environ-
ment. The simulated execution evaluated the theoremhood of all test data cor-
rectly. The corresponding execution times indicated that the inclusion of opti-
misation techniques, such as windowing the EEPROM stored formula in a local
memory bu�er, enhanced the performance signi�cantly. This version of the the-
orem prover, while operating in hardware limitations close to that of the Java
smart card later used, had to be modi�ed to execute on that smart card. The
limitations of the Java smart card used did not permit any extra enhancements
to be included due to program size, neither did it permit much separation of
code due to the stack usage of procedure calls. It is envisaged that the next
generation of Smart Cards entering the market in mid-98 will not require these
modi�cations.

We successfully ran cardTAP on a smart card provided by Schlumberger [6]
implementing JavaCard API V1.0 [7]. This card handles applications of up to
2.8K and o�ers approximately 200 bytes of main memory during run time. Our
test formul� consisted of 17 theorems of propositional logic [8] converted into
NNF RPN. We also tested some non-theorems, obtained by mutating some of
these 17 theorems.

The prover applet is limited by statically de�ned restrictions on the length
and complexity of the formula. This is required as a dynamic interpretation
of formul� may exhaust the resources of the smart card. In testing mode the
formula could use up to 26 distinct variables, could have at most 20 disjunctions,
and could have at most 20 nested conjunctions. The theorem length was limited
to a maximum of 126 symbols. With larger hardware resources available on the
card, these limitations may be safely extended.

Each formula was loaded onto the card individually and tested using the proof
procedure described above. The interaction was performed through LoadSolo, a
simple tool for communicating with the card, which came with the Cyber
ex

Development Kit [6]. cardTAP returned an answer code indicating whether or



Name RPN NNF Formula Execution Time

Pelletier's 17 theorems:

P1 +&&p-q&-qp&+-pq+q-p 21.9 s

P2 +&pp&-p-p 6.9 s

P3 ++-pq+-qp 2.0 s

P4 +&&-p-q&-q-p&+pq+qp 22.1 s

P5 +&+pq&-p-r+p+-qr 8.7 s

P6 +p-p 1.7 s

P7 +p-p 1.7 s

P8 +p&+-pq-p 3.2 s

P9 +&pq+&-pq+&-p-q&p-q 27.6 s

P10 ++&pq&-p-q+&q-r+&p&-q-r&r+-p-q 93.0 s

P11 +&pp&-p-p 7.0 s

P12 +&+&+&pq&-p-qr&+&p-q&-pq-r+&p+&qr&-q-r&-p

+&q-r&-qr&+&+&pq&-p-q-r&+&p-q&-pqr

+&p+&q-r&-qr&-p+&qr&-q-r -

P13 +&&-p+-q-r+&-p-q&-p-r&+p&qr&+pq+pr 110.0 s

P14 +&+&p-q&-pq+&-qp&q-p&+&pq&-p-q&+q-p+-qp 160.0 s

P15 +&&p-q&p-q&+-pq+-pq 22.1 s

P16 ++-pq+-qp 2.0 s

P17 +&&&p+-qr-s+&&p-q-s&&pr-s&+s+-p

&q-r&+s+-pq+s+-p-r -

Non-theorems:

N1 &-pp 2.0 s

N2 +pp 2.4 s

N3 p 1.8 s

N4 -p 1.8 s

N5 +&&p-q&-qp&+-pq+qp 7.2 s

N6 +&+p-q&-qp&+-pq+qp 25.3 s

N7 +&pp&p-p 2.7 s

N8 ++-pq+q-p 5.0 s

N9 +p&+-pqp 6.7 s

N10 +&pq+&-p-q+&-p-q&p-q 7.3 s

Table 1. Median smart card execution times using the test data set.

not the formula was a theorem. All measurements were made by hand: each
theorem was proved 3 times, the fastest and the slowest times were discarded.
The run-times presented in Table 1 include communication overhead.

Timing constraints enforced by the card, due to requirements of ISO smart
card standards, either raised an exception or garbled communication during
some of the longer computations. These problems could be partially solved by
interspersing commands which send data from the card to the reader. These
modi�cations are su�cient for proving the shorter theorems, theorems P10 and
P13, but for the larger ones, like theorem P14, additional modi�cations had to be



made. All modi�cations concern only additional commands for communication.

Theorems P12 and P17 could not be proved with any version of cardTAP .

4 Conclusions and Outlook

The current version of cardTAP is a propositional logic theorem prover written
in Java. The methodology is essentially the same as that of the Prolog �rst

order logic theorem prover leanTAP . With greater available resources on smart

cards, an extension of cardTAP to �rst-order logic is straightforward. Additionally
the tableaux method is easily extended to incorporate modalities [9], allowing
modal and in particular temporal notions in the logic [10]. These extensions
are of interest with respect to authentication logics and the use of veri�cation
to enhance the security of smart cards since authentication logics are based on
modal logics [2].

Our experiments yielded very slow execution times which re
ect the compu-
tational power of current smart card technology, but we succeeded in demonstrat-
ing that it is possible for automated deduction software to reside and execute on
a smart card. While smart card technology is not yet powerful enough to verify
potential applets, it is approaching the capability of veri�cation of communica-
tion sequences based on logical formalisations of the communication protocol.

The simplicity of the Java code is a direct result of the tableau methodol-
ogy which nicely partitions the problem into multiple branches, each of which
can be explored using the limited resources individually. In contrast, \global"
procedures such as resolution would not have been as well suited since they
accumulate information rather than partitioning it.
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