
Semantic Federation of Product Information from
Structured and Unstructured Sources

Matthias Wauer
TU Dresden

Computer Networks Group
01062 Dresden

Germany
matthias.wauer@tu-

dresden.de

Johannes Meinecke
SAP Research Dresden

Chemnitzer Str. 48
01187 Dresden, Germany

johannes.meinecke@sap.com

Daniel Schuster
TU Dresden

Computer Networks Group
01062 Dresden

Germany
daniel.schuster@tu-

dresden.de
Andreas Konzag

BMW Group
Munich

Germany
andreas.konzag@bmw.de

Markus Aleksy
ABB Corporate Research

Ladenburg
Germany

markus.aleksy@de.abb.com

Till Riedel
TecO/Karlsruhe Institute of

Technology
Karlsruhe
Germany

riedel@teco.edu

ABSTRACT
Product-related information can be found in various data
sources and formats across the product lifecycle. Effectively
exploiting this information requires the federation of these
sources, the extraction of implicit information, and the ef-
ficient access to this comprehensive knowledge base. Ex-
isting solutions for product information management (PIM)
are usually restricted to structured information, but most
of the business-critical information resides in unstructured
documents. We present a generic architecture for federating
heterogeneous information from various sources, including
the Internet of Things, and argue how this process benefits
from using semantic representations. A reference implemen-
tation tailor-made to business users is explained and eval-
uated. We also discuss several issues we experienced that
we believe to be valuable for researchers and implementers
of semantic information systems, as well as the information
retrieval community.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software; H.4.0 [Information Systems Applications]:
General

General Terms
Design, Management, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Federated Information System, Product Information Man-
agement, Ontology, Semantic Web, Information Extraction

1. INTRODUCTION
Product-related information is generated, accessed and

manipulated along the product lifecycle in heterogeneous
formats. Only part of this information can be accessed using
state-of-the-art product information systems as large parts
of this information are only available in unstructured sources
or distributed along different databases and legacy systems.
The challenge to create an all-embracing view on products
is huge. Such a comprehensive product information system
has to integrate and harmonize data from all phases of the
product lifecycle, all different source formats like unstruc-
tured documents, sensor information or product databases.
Furthermore, it must even cross organization boundaries as
different stakeholders may be responsible for the design, pro-
duction, delivery, and service of a product.

The Aletheia project [1] is a unique attempt to bring to-
gether industry partners (ABB, BMW, Deutsche Post DHL,
Otto, SAP) with five innovative application scenarios from
different phases of the product lifecycle and five different
landscapes of current state-of-the-art product information
management. All these partners have a keen interest in
improving the information flow internally as well as with
their customers and partners and to open up new sources of
product-related information like Web 2.0 pages.

In this paper we try to answer the research question if it
is possible to federate structured as well as unstructured
sources of product information along the product lifecy-
cle. We use semantic technologies for this purpose and de-
ploy and advance information extraction techniques. The
scenario in Section 2 describe two of the use cases of the
Aletheia project clarifying the opportunities of federated
product information systems (FPIS). We further discuss re-
quirements derived from these and other scenarios. A dis-
cussion of existing architectures for semantic information
management and federation in Section 3 shows the need for

a new architecture matching the requirements mentioned in
Section 2.3. The contributions of this paper consist of

1. A discussion of design decisions for FPIS in Sec-
tion 4,

2. A high-level component architecture for FPIS in
Section 5.1 including a concept for data sharing be-
tween organizations,

3. A detailed concept of the Aletheia Service Hub
(Section 5.2), our central component for information
federation within organizations,

4. A reference implementation of a semantic FPIS
described in Section 6.

Section 7 contains a discussion of the results achieved so
far.

2. SCENARIOS AND REQUIREMENTS
In order to motivate our research, we discuss two scenarios

in the industrial sector. They are derived from two case
studies conducted in the Aletheia project, focusing on

1. product lifecycle management (PLM) at ABB, a large
company providing power and automation products,
technology, and service1, and

2. knowledge management in automotive engineering at
the BMW company.

2.1 Use Case ABB
The customer has installed several products of the com-

pany at their local site. A service team of the customer
notices that one of the devices is defective. Even though
they have the knowledge which devices are applied at this
installation, they lack the capability of identifying the ac-
tual cause and repairing the device. Hence, they contact
the company’s call center that records the service request.
However, neither the customer’s service team nor the call
center associate have expert knowledge about the defective
device. The service report therefore is frequently inaccu-
rate, and preparing the service operation is laborious for an
assigned service technician on the basis of this report.

On site, most of the suitable unstructured information is
not consulted by the service technician because finding it
based on the available information is cumbersome. If ad-
ditional spare parts are required to repair the device, the
service technician has to manually coordinate the order of
a spare part and its delivery with the company’s call cen-
ter, the logistics provider, and the customer’s service team.
This causes several phone calls and requires much effort be-
cause the service technician’s available information is not
integrated with those of the other parties.

This use case can be optimized by three means. First, the
customer should be able to solve well known problems with
defined solutions without the need to consult a company’s
service technician. Aletheia can support this by providing
such information related to the customer’s actual installed

1In addition to this company, the scenario includes a cus-
tomer from the chemical sector that uses the company’s
products and services, and a logistics provider that stores
and ships the company’s spare parts. A similar use case is
studied in more detail in [14].

base and corresponding historical information. On top of
that, the different vocabulary of customers and service doc-
uments can be translated with semantic search. Second,
this previously collected information is useful to more ac-
curately define detailed problem descriptions for identifying
the most appropriate service engineer, who can find related
information from unstructured documents easier if they are
extracted and semantically related to the respective device
and problem symptoms. Third, the federation of RFID and
sensor data correlated to the defective device can improve
failure analysis by providing all relevant information, while
the connected information helps assisting processes like or-
dering spare parts between the involved parties.

2.2 Use Case BMW
The development of vehicles is characterized by high com-

plexity, a strong network of development issues, and many
participants who work in a matrix organization. The prod-
uct development process can be divided into the phases of
concept and series development. In the concept phase, tech-
nical requirements are derived by customer requirements. It
is characterized by dynamic processes and few formalisms.
In addition, a large amount of unstructured data is needed
for the main part, called the concept phase.

The use case identifies relevant requirements of the tech-
nology and methods development. For this purpose, the
research group has examined key elements of the product
development applied in a business process with its data, ac-
tors, and interaction patterns (Figure 1).

Figure 1: Development of vehicle concepts

This process describes the derivation of functional require-
ments of customer-related product goals by the feature man-
agers and provision of design solutions by the function man-
agers. The concept engineer is responsible for ensuring con-
sistency and plausibility, which are ranked above all relevant
development issues in the project. As illustrated in Figure 2
a major part of the relevant data for the concept phase is un-
structured. Structured data are created during the concept
phase of the development process.

Conventional methods and tools for data management, as
they are productively employed in the series development

Figure 2: Relevance of managing unstructured data
in the concept phase of vehicle development

of automobiles, are limited in their applicability due to the
characteristics of the vehicle concept development.

The challenges which have to be mastered for the Aletheia
use case can be roughly divided into two classes:

1. Federation of different sources: The data and informa-
tion required for early product development are stored
in different information silos. Not only structured data
have to be considered. Especially during concept de-
velopment, mostly unstructured data is produced, with
office documents being common examples. Further-
more, these data are not accessible corresponding to
its content or context, and the relations to structured
data are not covered or described inadequately.

2. User access to the federated information: From a user
perspective, the physical location of data and informa-
tion is secondary. The information itself is more im-
portant. Between the various development issues there
are several dependencies which are not well-known by
all parties. It is not just about finding individual docu-
ments or facts. In addition, the dependencies between
different information fragments from different sources
should be useable and visible for users.

Conventional systems focus either on the search for struc-
tured data (like database knowledge discovery systems), or
on the search of unstructured data (such as desktop search).
Therefore, at the technical level, mechanisms must be pro-
vided to enable uniform access to data and documents from
different physical sources. From a user perspective, methods
and suitable surfaces are necessary to allow an integrated
view of the federated informations and the dependencies be-
tween them.

2.3 Requirements
Out of these and other scenarios from the use case part-

ners we identified a large number of requirements. The re-
quirements were acquired on-site in 2-day workshops at each
industrial partner. The resulting large set of requirements
then has been further analysed and condensed to the follow-
ing main categories:
Requirement 1: Federated Information Retrieval

The central functionality users want to use an FPIS for
is federated information retrieval, i.e., formulating an infor-
mation need and retrieving relevant results from the FPIS.

There are many features similar to classical search engines
like natural language queries, auto-complete, clustering of
results, personalization, and faceted search that users ex-
pect from an FPIS. Beyond that, we also identified FPIS
specific requirements: search results that mix up document
links and ontology facts relevant to the search query. A sort
of federated ranking method is needed to bring order to this
result list. Furthermore, one should be able to restrict the
sources to search for by a query, or some kind of intelligent
source selection method should identify the best sources for
each query.
Requirement 2: Information Exploration

Besides the retrieval part, users should also be able to
navigate through the information space created by an FPIS
and to explore connections between different information en-
tities, documents, and related concepts. Information explo-
ration and information retrieval can also be mixed up as
exploration may be refined by a query and vice versa.
Requirement 3: Information Integration

Federation of product information means integrating ex-
isting sources of information that were formerly used sepa-
rately to create an all-embracing view on all product-related
information. Thus a large number of requirements targets on
using existing databases and make them searchable within
the FPIS. Other types of information sources include file
shares with formatted documents such as Word, PowerPoint
or PDF and information from the Internet of Things, i.e.,
RFID and sensor data. Information integration includes ap-
propriate mapping schemas, the management of access poli-
cies for the different sources as well as the actual access
technologies like Web service interfaces or the like.
Requirement 4: Information Extraction

Full-text indexing of unstructured information (i.e., doc-
uments on file shares as well as websites) is not enough to
reach the goal of semantic federation of product information
along the product lifecycle. Information extraction tech-
niques are needed to obtain information from unstructured
documents. This mainly means (but is not restricted to)
Named Entity Recognition (NER) to recognize entities with
different keywords but belonging to the same semantic con-
cept. Meta information should also be extracted from the
documents to improve the relevance assessment.
Requirement 5: Information and Ontology Manage-
ment

Once an FPIS gets deployed we also need means to di-
rectly manipulate the information presented to the user. It
might be incorrect or important information may be missing.
This may optionally require update mechanisms to populate
changes made in the FPIS back to the information sources.
Another important point is the ability to easily manipulate
the ontologies used to realize the information integration
and information extraction.
Requirement 6: Information Sharing

Interestingly, the aspect of information sharing between
organizations did not play an important role in the inter-
views. Only in the ABB case we actually found a use case
where we need sharing of information as partner companies
do part of the service for machines on behalf of ABB. But if
FPIS will get used in organizations, the need for information
sharing will soon arise and will be the next step in the evo-
lution of FPIS. If we really want to create an all-embracing
view covering all phases of a product’s lifecycle, we need to
share at least part of the information between a product’s

designer, producer, retailer, logistics provider, and service
provider.

3. RELATED WORK
Since the suggested federated product information system

incorporates a multitude of functionality, related research
spans a number of areas. Thus, this section will discuss fed-
erated information systems in general before moving on to
systems that introduce semantic processing. After a survey
of frameworks for information extraction the application of
the extracted information for semantic search will be dis-
cussed. Finally, we present related work with a focus on
product information.

3.1 Federated Information Systems
An early approach to federated search was presented as

the Information Manifold [13]. The system uses source de-
scriptions, describing contents and capabilities of different
structured information sources, in order to determine appro-
priate execution plans for a query. In contrast to Aletheia,
unstructured information is only integrated by applying man-
ually defined “topics” to such information sources. Further-
more, the approach assumes a global schema, referred to as
world view, to federate the information. Aletheia should in-
stead provide the means to integrate information based on
different models, as stated in requirement 3. Nevertheless,
Information Manifold is an important guideline as it applies
description logic based knowledge representations for its fed-
eration algorithms.

3.2 Semantic Federation Systems
The complex nature of the presented requirements led to

the investigation of Semantic Web technologies in order to
handle the complex task of relating the federated informa-
tion. In this context, the NeOn project provides a generic
architecture [29] for ontology-driven applications. It sepa-
rates the required services for ontology engineering and on-
tology usage with a clear focus on the engineering part. The
aspects that are most important regarding Aletheia, such
as the interaction of the core services and the extraction of
information from the data sources, is not covered in detail.
Instead, the creation and maintenance of semantic informa-
tion is the key aspect of NeOn. With its focus on the usage
of federated information, Aletheia instead needs to define
components and interfaces that not only handle semantic
information, but also integrate them with uncertain infor-
mation that has been extracted from unstructured sources.
This also requires the definition of appropriate services that
enable access to this comprehensive knowledge base.

Considering distributed semantic information, projects like
SemaPlorer [23] have shown the benefits of federating such
data sources. It proposes the use of NetworkedGraphs, pro-
viding distributed views over RDF datasets that can be
queried using SPARQL. As shown in Figure 3, it presents
scalable reasoning by preprocessing a transitive closure of
the SKOS hierarchies of configured datasets. Again, it only
partly supports the requirements of Aletheia, as it neither
connects arbitrary sources, nor is there any distinction be-
tween public and confidential information.

Related to that, but based on a different motivation of
the social semantic desktop, the NEPOMUK project [19]
developed a semantic personal information search system
and different ontologies suitable for ordinary desktop enti-

KAT

SemaPlorer

Interactive
Map

Access to
Flickr Images

...

KAT Plugins

GUI Tools and Layouter

M
es

sa
gi

ng
 B

us

RDF Repository Manager

Plugin Manager

register

load, initialize,
finish

get repository

add,
remove

update

query of
data

...

Federator Administration Component

Permanent Storage (S3)

RDF Stores
(EC2)

Source
Finder

Web Server
#start, #stop, #status

Query Compositor based on COMM

update
config

Sesame HTTP Rep.

LuceneSail

NativeStore

Literal Stores
(EC2)

Lucene

start,
stop

evaluate, query

FlickrDBPedia

Inferencer

NativeStore

RDF Store
Image

Literal Store
Image ...

query

...
Inferencer

NativeStore

Sesame 2 Repository API

NG Sail
...

Distributed Sail

...

Sesame 2

NG Sail

Distributed Sail

Native Store

Deploy to EC2

RDF Rep. Mng.

Sesame HTTP Sesame HTTP

Geonames

Figure 3: SemaPlorer architecture, from [23]

ties. As such, it also addresses the extraction of semantics
from documents and how they can be indexed and stored,
but apparently there are no means to handle databases. It
proposes a P2P architecture for distributed storage of doc-
uments, but this overlay network does not ensure that all
documents are accessible. Thus, it does not address the is-
sue of actually connecting truly heterogeneous information
in our context, but the document extraction components are
highly valuable for Aletheia.

Several other architectures have been proposed that deal
with semantics. The Knowledge Content Carrier Archi-
tecture KCCA [4] focuses on semantically describing doc-
uments, in this case paid content, and leveraging them us-
ing a proposed architecture. However, most of the work
is about the definition of a schema, and the upper ontolo-
gies that provide its foundation, for describing facets such
as content, presentation, a usage context called community,
and business descriptions like negotiation protocol and pric-
ing scheme. The only hints on the actual federation is given
by a high-level overview of components like Registry and
Manager, and a stateful protocol which is said to be based
on serialized RDF graphs.

3.3 Information Extraction Related Research
Regarding unstructured information, SMILA (Semantic

Information Logistics Architecture) [24] presents a simple
data extraction model for different unstructured sources and
an architecture based on OSGi, SCA, and BPEL. This al-
lows for dynamically switching extraction components and
flexible management of the execution depending on specific

use cases. Compared to the Aletheia requirements, it does
not connect this data with structured information, and any
semantic processing is designed to be executed on a higher
level. Indeed, the ontology store proposed by the architec-
ture is rather a wildcard for further extensions.

With regards to the extraction of information, the Un-
structured Information Management Architecture (UIMA)
[10] can act as a blueprint for the extraction components
of Aletheia, separating the information access, analysis, and
acquisition aspects. Some design decisions of UIMA, such
as the annotation of metadata as simple sets of key-value
pairs, may have to be revisited in order to gain major ben-
efit of this data for the integration process, as explained in
requirement 3.

Gaining precise knowledge from different sources is the ob-
jective of YAGO [12], which relies on few core sources that
are assumed to provide correct information and semantically
connects this information. Core extractors use rules to de-
rive the knowledge base. The extracted facts are further
restricted to those validated using the WordNet taxonomy.
In a second two-step process, additional information is gath-
ered from Web resources that is then judged with regards to
the existing knowledge base. Although we generally follow a
similar approach, the presented Aletheia use case would not
benefit from publicly available but irrelevant core sources
like Wikipedia, as intended by YAGO.

3.4 Semantic Information Retrieval
One major motivation of federating heterogeneous data

sources can be found in the potential increase of relevance
of the found documents, given that at the moment, no infor-
mation extraction process can faithfully extract completely
reasonable knowledge from unstructured data. Providing
humans with more accurate search results that they can uti-
lize to gain that knowledge therefore is more promising. The
matching of a semantic representation of documents with a
query model based on the same semantic representation is
likely to achieve that.

An early study showing that potential was performed by
Paralic and Kostial [17] who compared traditional full-text
TF-IDF information retrieval and latent semantic indexing
(LSI) with a similarity metric that compares the respective
sets of concepts for query and documents:

simonto

(
→
Q,
→
Di

)
=

{
|Qcon ∪Di,con| if |Qcon ∪Di, con| 6= 0

k

where Qcon and Dcon are sets of concepts assigned to query
→
Q and document

→
Di, respectively. According to the au-

thors, results can be improved when this similarity metric
is multiplied with the TF-IDF similarity. On a MEDLINE
related corpus with manually assigned query concepts, this
knowledge based approach showed a significantly improved
performance, as shown in 4.

In reality, users prefer to use free text input methods to
formulate a query for their information need, in contrast to
ontology terms that would be required for the above method.
Hence, user input needs to be translated into such semantic
concepts. Tran et al. [28] studied how such an interpretation
can be executed using a graph-based approach. Users can
provide keywords that are matched with a set of concepts.
Assuming that a subgraph of the concepts for the set of

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Recall [%]

P
re

c
is

io
n

 [
%

]

TF - IDF

LSI

Figure 4: Performance comparison of TF-IDF
full text indexing, latent semantic indexing, and
ontology-based similary metric, from [17]

keywords is more relevant if the concepts are closely related,
the system ranks each subgraph accordingly, based on the
number of edges in that graph.

This approach struggles with mapping terms to concepts
when the terms aren’t defined in the ontology. As a result,
the average recall is relatively low (43-52%), whereas the
F-measure in their evaluation averages between 64% for the
generated query selected by hand, and 53% for the automat-
ically selected highest-ranked query. If appropriate lexical
knowledge is available, this could be utilized to improve the
performance.

In order to circumvent the problem of vocabulary cover-
age, the K-search system [5] proposes an improved hybrid
search method that applies semantic search for query parts
where metadata is available, and traditional keyword-based
search for parts that are not covered. Originally conceived
in [21], which basically re-ranks the original search results
returned by a syntactic search, K-search extends this com-
bined approach with a method for directly addressing con-
cepts and relations in the semantic model. Thus, a query
is parsed into different parts for keyword, semantic, and
keyword-in-context queries that are each processed by the
respective search engines. Finally, the individual results
are merged and ranked using the provenance information
of each semantic assertion, i.e. the document each triple has
been extracted from. Note that this provenance requires all
semantic information (metadata) to arise from documents,
which is not a valid assumption within Aletheia.

Evaluation of this hybrid search system showed that the
accuracy is much better and combines high recall measures
bettern than keyword search with the improved precision of
semantic search, without the drawbacks of either method.
In fact, the F-measure improved by 49% and 55% with re-
gards to keyword and ontology based search, respectively.
Additionally, a user-based evaluation was carried out with
service engineers and designers. Here, the service engineers
favored hybrid search by 61%, whereas designers did not
have a clear preference. For Aletheia, this is of interest with
regards to one of the use cases with a similar user group.
As a detail, the user interface of K-search is form based,
because the intended audience is familiar with it.

3.5 Product Information Related Research
Focusing on product information, Brunner et al. [8] exam-

ine the use of semantic technologies in the context of Master

Data Management (MDM). For their system named SOR,
they argue that a subset of OWL DL is sufficient for most
product information management scenarios. Furthermore,
they present a generic meta-model for defining scenario-
specific product information as well as a basic architecture
for processing such product information. Although it shows
how product information can be management semantically,
it does not explain how to keep the complexity of the ontol-
ogy from the user. The integration of existing data sets is
not discussed either.

The Product Semantic Representation Language PSRL
[18] instead focuses on the exchangeability of product in-
formation, and how they can be formalized in order to be
interpreted by the involved parties. Similar to the paper
mentioned above, they use W3C standards and a descrip-
tion logics representation. However the work mainly consists
of a semantic mapping methodology between assumed on-
tologies for collaborating parties, for which the paper notes
“no application has an explicit ontology”. Thus, they sim-
ply suppose that the involved applications already use the
proposed model for their terminologies.

Other product information management architectures ap-
pear to ignore Semantic Web standards, e.g. OpenPDM
[26]. They implement a product data sharing architecture
on top of the ISO STEP standard data model and existing
SOA middleware. Although this approach helps to reduce
the cost of developing and maintaining connectors and data
formats, we believe that the underlying data model enables
an MDA-based code generation, but fails to support a more
thorough processing and integration of product information,
such as extensible reasoning.

All of these approaches do not seem to incorporate any
mechanisms for extracting information from unstructured
documents.

3.6 Conclusions
All of the presented research only solves part of the re-

quirements. Hence, the architecture proposed subsequently
aims to provide an integrated approach for a FPIS. Table 1
compares the discussed related work with regards to fulfill-
ing the requirements towards a federated product informa-
tion system.

4. DESIGN DECISIONS
Based on the requirements mentioned above, there are

several design alternatives that are not straightforward to
decide when designing an FPIS. We discuss the main design
decisions we faced in the Aletheia project in the following.

4.1 Data Sources and Processing
The nature of federated information retrieval, as described

in requirement 1, implies a range of data sources that may
provide relevant information for a user. In most cases these
data sources are beyond the control of the Aletheia system.
We therefore decided to design a layer of data providers,
components which are physically separated from the actual
data processing and management. Furthermore, the flexi-
bility of implementing the data-providing components using
the technology of choice is valuable. That way, data sources
can be made available that would otherwise not be acces-
sible, or would require an extensive re-implementation of
access logic.

These data-providing components can be further distin-
guished by their access characteristics. The content of some
data sources often changes. Ideally these data sources should
be queried on demand in order to ensure current data, such
as the status of a system or the current location of a parcel.
However, response times can be longer due to the increased
communcation overhead and the performance of the slow-
est data source. In some cases, it is not practical to pull
all information because it may be required for, e.g., input
suggestions (auto-complete).

On the other hand, much of the content in data sources
can be considered static, and translating the source format
into a processable form is costly. For such data sources,
push access, i.e. loading the data into a logically central-
ized storage, is more appriopriate. However, modifications
of the original data sources need to be propagated, and up-
dated pushed information may be inconsistent with previ-
ously stored information from this or a different source. We
therefore explicitly decided to support both access paradigms
and let FPIS system architects decide which method is most
appropriate for each data source.

Push access frequently occurs for data sources like Web
and file share documents. This access paradigm also makes
for a more thorough processing of the source documents,
such as semantic annotation, which would take too much
time during query processing. It is possible to use a pipes
and filters architectural style to connect the individual pro-
cessing steps.

However, we found that separating document discovery,
extraction, and storage from the semantic annotation tasks
yield two major advantages. The implementation of the doc-
ument preprocessing, such as crawling and full text extrac-
tion, can evolve independently from annotation processing
like named entity recognition, given a defined data model.
Additionally, documents that have already been crawled do
not have to be crawled again if the annotation process is
modified or restarted on a different knowledge base. The
negligible drawback of this approach is a potential scalabil-
ity limitation if the intermediate document storage is too
slow or too small.

4.2 Storage of Stuctured and Unstructured In-
formation

During the requirement analysis, we found the need for a
strict separation of facts, such as data extracted from a cu-
rated database, and possibly erroneous information resulting
from, e.g., automated document annotation. The latter kind
of infomation always contains a level of uncertainty which,
in some cases, can be quantified by the respective algorithm,
and is linked to mostly unstructured data.

Furthermore, we noticed that semantic middleware is not
equally appropriate for these two kinds of information that
must be clearly distinguished. Some systems provide seman-
tic views on a large number of instances and reasoning on
assertions. Others are more suitable for document storage
and attaching probabilities to annotations, which is neces-
sary for reasonable ranking algorithms. In most cases, al-
gorithms differ for fact and data search, e.g. in terms of
navigation facets and ranking methods.

As a result, we decided to separate the management and
processing of structured information from managing unstruc-
tured information, similar to [30]. This repository split in-
creases the flexibility of modeling the ontologies, e.g., regard-

Requirements
Related Work Federated Exploration Data Integration Extraction Management Sharing

IM [13] x o structured, unstructured - - -
NeOn [29] o x semantic - x o
SemaPlorer [23] x x semantic - - o
NEPOMUK [19] o (P2P) x semantic, unstructured x x x
KCCA [4] o - unstructured - o o
SMILA [24] - - unstructured o - -
UIMA [10] - - unstructured x - -
YAGO [12] - o semantic, structured, unstructured x x -
PaKo [17], Tran
[28], K-Search [5]

- - semantic, unstructured - - -

SOR [8] o - semantic - o -
PSRL [18] - - semantic - o x
OpenPDM [26] o - structured - o x

x supported o partially supported - not supported

Table 1: Comparison of Related Work w.r.t. Aletheia requirements

ing the definition of certain concepts as instances or classes.
Information can still be semantically connected between the
two repository components by using the same URI. Reason-
ing about both repositories, however, is not possible, but it
would not be sensible with regards to the nature of stored
information. As a side effect, certain functionality that re-
quires data from both repositories requires additional pro-
gramming.

With this decision in mind, the implementation of core
services accessing the repository is tightly coupled with the
underlying semantic technology. An abstraction on that
layer would require unnecessary effort and hinder perfor-
mance optimizations, which regularly require direct access
to the platform. As a drawback, switching the semantic
middleware to another API would result in re-implementing
most of these basic services.

Although the federation of structured data sources is a
core aspect of the federated product information system,
we found that our semantic middleware of choice already
supports extension points for most of this functionality. The
use of another semantic middleware may require additional
design and implementation effort.

4.3 Front-end Interactions
In general, front-ends including additional back-end sup-

port are separated from the core services. Thus, any re-
quired technology can be applied, e.g. Google Web Toolkit
(GWT) or Adobe Flex. Initial tests showed that commu-
nication overhead that may lead to a perceived increased
response time is only marginal.

Additionally, the interfaces between the front-end and core
services are independent of specific semantic technologies.
Here, we favored reusability and additional control over ex-
tended functionalities that may result in, e.g., directly ex-
posing a SPARQL interface.

Finally, benchmarks [15] and tests showed that certain ex-
pansive semantic queries may result in increased response
times. Even though we selected a semantic middleware
that performs very well, we decided to employ asynchronous
communication between the front-end and Aletheia services,
typically based on AJAX [11] Web interfaces, in order to im-
prove the system’s user-perceived responsiveness. As a re-

sult, the implementation of the front-end tends to be more
complex, depending on the applied technology.

5. REFERENCE ARCHITECTURE
Based on the design decisions described above, we devel-

oped a service-oriented reference architecture consisting of
distributed components for information access and extrac-
tion, information federation and information presentation.
All these components communicate via Web service inter-
faces thus separating these different concerns and ensuring
a maximum flexibility and extensibility. Our reference ar-
chitecture consists of five major entities that are described
in the following. The central component connecting each of
these entities is then explained in detail in Section 5.2.

5.1 Components and Information Flow
Figure 5 illustrates the architecture of an Aletheia sys-

tem. With regards to requirement 6 (information sharing),
it includes the connection of instances across different orga-
nizations and departments. It is comprised of the following
major components:

Application Servers enable clients to access the Aletheia
system and map domain-specific functionality to the
generic interfaces. This includes a user-centered prepa-
ration of the available information. Both stand-alone
and Web applications are supported as front ends.

Aletheia Service Hubs (ASH) are the key component for
managing the semantic model, indexed documents, and
stored facts and metadata that are stored inside the
repository component. They offer Web Service in-
terfaces for application servers and access information
sources using Web Service interfaces again. They can
be connected to each other across organizational bound-
aries, with distributed query processing as in [30].

Repository A repository is attached to each ASH to store
or cache the primary data retrieved from the infor-
mation sources, additional meta data about this in-
formation and a semantic model to harmonize all the
information from the different sources.

Application
Server Portal

Product
Facts

Provider

Document
Information

Provider

IoT
Information

Provider

Web
Information

Provider

Aletheia
Service

Hub

Aletheia
Service

Hub

Company A –
Department 2

Company B –
Partner of
Company A

Company A –
Department 1

Application
Server

Client Client

Company C
External Information Provider

Internet of
Things

Public Web

Local Files

Repository

Primary Data

Meta Data

Semantic Model

Repository

Primärdaten

Metadaten

Harmonisierungs- daten

Repository

Primärdaten

Metadaten

Harmonisierungs- daten

Repository

Primärdaten

Metadaten

Harmonisierungs- daten

Company B
Registry

Client

Client
Client

Company C
Registry

Company A
Registry

Aletheia
Service

Hub

Aletheia
Service

Hub

Figure 5: Aletheia reference architecture

Information Providers act as wrappers to existing data
and information sources that should be leveraged by
the Aletheia system, and facilitate both push and pull
access depending in the type of source. They are the
components that actually access the data sources.

Registries store information about each ASH (external reg-
istry interface) and the connected information sources
and services (internal registry interface), enabling dis-
covery for more or less close cooperations between dif-
ferent departments and organisations.

With regard to distribution, each of the Aletheia Service
Hubs is the central node of a generally closed system that
can be connected to external parties due to defined terms
and conditions. This decision was an implication to the data
sovereignty required by all the industry partners. Never-
theless, the platform may be configured to provide publicly
available information via various channels, particularly with
regards to linked data [6].

As the ASH and its connected repository are the central
entities of our architecture, their specific composition is ex-
plained in detail subsequently.

5.2 Aletheia Service Hub
A more detailed view on the Aletheia Service Hub’s com-

ponents, corresponding to the architecture, can be seen in
Figure 6, a fundamental modeling concepts (FMC) block di-
agram. Here, the client components are shown at the top,
whereas the data sources appear at the bottom of the ar-
chitecture. This detailed architecture can be separated into
different layers.

A few vertical services such as generic configuration and
monitoring features can be used by all components. Please
note that many connections have been left out in order to
improve readability.

Front End Services.
These Web services are supposed to abstract the user

queries from the technical implementation of the repository,
hence reducing the complexity of the system from the client’s
point of view. The major task of finding federated seman-
tic information is supported by the Semantic Search and
Navigation Service providing faceted search for extracted
and stored knowledge as well as documents corresponding
to this knowledge. The semantic integration of these differ-
ent types of information into one condensed result list is one
of the major achievements of Aletheia. Besides the search
functionality, a user can also browse the virtual catalog of
product information using this service.

The result lists can be downloaded for offline processing
using the Export Service if needed. The Update Service
provides the ability to modify the information presented in
the result lists thus enabling a feedback channel for the users
of the system.

User customization is realized by the Login Service, set-
ting up user sessions and assigning roles to these users as well
as managing the user profile (context, preferences, history)
to improve the quality of search results by personalization.
The Configuration Service complements the frontend ser-
vices by providing a tool for administrators to manage and
configure the components of the Aletheia Service Hub.

Repository.
Due to the different types of stored information, we con-

ceived a combination of different repository components.
The general and domain ontologies, stored facts, mappings
and rules as well as the reasoner component are considered
part of the semantic repository. An additional text index
enables search of ontology concepts and facts. This part
of the repository is capable of managing different modules,
which can be exploited for storing the individual ontologies

Aletheia

Service

Hub

Interaction Components

Data and

Information

Provider

Frontend Services

Repository
 Repository Service

Client Application or Web Server with Web Application

Semantic Search and

Navigation Service

Update

Service

R R

R

Data

Integration

Layer

Facts

Import

Service

R

Login

Service

Crawling Data Provider
Import

Tools

ApplicationsFile Servers

M
o

n
it
o

ri
n

g
 S

e
rv

ic
e

IoT Data

Collector

Sensor Data

R

Policy Enforcement Ranking

Facts

Query

Adapter

Index

Federation

Service

DBWebIndex RDF Store

R

Export

Service

Extraction Service

Extraction

Knowledge

Raw

Data

R

Configuration

Service

Registry

R

User Context

Repository

Roles, Query

Logs,

Configuration

Semantic Repository

Domain Ontology, Facts,

Mappings, Rules

Reasoner
Ontology

Index

Uncertain Repository

Text Index
Triple

Index

Extracted Information,

Meta Information

Figure 6: Architecture of the Aletheia Service Hub

of the participants for a certain use case.
In addition to that, the uncertain information repository

manages knowledge that has been automatically extracted
using approaches such as natural language processing (NLP),
i.e., it has a certain probability and cannot be safely trusted
like facts. The uncertain repository stores the extracted in-
formation and assigned meta information (source, time of
extraction, trust value, ...) as RDF triples. A triple index
enables search on this information. Additionally, the docu-
ments are also indexed in a classic text index so information
can be searched in two ways either syntactically or seman-
tically.

The third sub-repository stores the user context, i.e., the
roles, query logs, preferences and other configuration infor-
mation. This information is exploited by the policy enforce-
ment point as well as the ranking component to improve
ranking by personalization.

The three different repositories are tied together to a vir-
tual repository by the Repository Service providing a single
query interface. Queries are then transmitted to the dif-
ferent repositories to fetch information already inside the
repository as well as to federation components like the Index
Federation Service and the Facts Query Adapter relaying the
queries to external information providers.

Data Integration Layer.
The actual federation of information is done in the Data

Integration Layer supporting both push and pull semantics.
Facts from structured information sources can be integrated
in the semantic repository using the Facts Import Service.
Unstructured documents can be delivered to the Extraction
Service which executes information extraction processes and

pushes the extracted information as well as the raw text of
the document to the Uncertain Repository.

Pull semantics for structured information is supported by
the Facts Query Adapter, a plugin in the Semantic Reposi-
tory which forwards structured queries to external sources.
It provides a mapping of Aletheia queries to SPARQL and
SQL thus enabling any SPARQL endpoint or SQL database
to be integrated in the Aletheia system. Nevertheless, a
schema mapping to the respective domain ontology has to
be cretated for each structured data source regardless if it
is integrated on push or pull basis.

Pull integration of unstructured information is done by
the Index Federation Service. It uses a registry of exter-
nal indexes to be queried at runtime. Such indexes could
be existing search engines or special Aletheia information
providers capable to do Named Entity Recognition. We are
currently investigating resource selection methods for this
data integration path to be able to selectively query exter-
nal indexes depending on query topics.

Data and Infomation Provider.
The last layer of our architecture comprises the Data and

Information Providers which are residing at the information
source to pre-process information for the Alethea system.
The Crawling Data Provider is a Web and file share crawler
delivering raw document data to the Extraction Service in
a unified format. Several Import Tools are necessary to get
product information out of existing enterprise applications
or RDF stores and databases. These tools export the in-
formation to XML which is then further processed and se-
mantically lifted by the Facts Import Service. Thus, RDF
stores and databases can be accessed in both modes - push

Aletheia Field Service Platform

Data and
Information
Provider

Frontend
Services Semantic Search and

Navigation Service
IoT Data
Collector

IoT Platform Gateways

RFID Tag

Service Management

Service Mappings,
Lifecycle Information

Service Translator

Call Handler Event Handler

 WSN Node

Gateway Service

Network Configuration

Tag Data

User
MemoryID

Device Service WSN Service A

Local Storage

Discovery
Gateway Configuration

Management

WSN Service B

Mobile Service Application IoT Data Provider

Sensor DataConfiguration Data Domain
Information

Measurement Application

Aletheia Search Client

Network
Service

Device
Info

R

Service Definitions
Data Mappings

R

R

R

R
R

R

Figure 7: Integration of the Internet of Things
via gateways, and interaction components towards
Frontend and Data and Information Provider

and pull.

5.3 Internet of Things Integration
A special challenge for a future FPIS is the integration

of the so called Internet of Things. Wireless Sensor Net-
work (WSN) technology and Radio Frequency Identification
extends information systems towards real world objects en-
abling fine granual updates of the product state. RFID tech-
nology in particular can play an important role for prod-
uct life cycle management [25]. WSNs can provide impor-
tant maintenance critical information, especially for prod-
ucts and parts that otherwise could not be accurately cap-
tured by information technology [27].

Technology like WSNs and RFID can both link informa-
tion to the physical reality and provide fine-granular and
up-to date information about the state of physical entities
and make this information accessible towards an FPIS. Espe-
cially, as figure 7 illustrates, the Aletheia architecture can in-
tegrate Internet of Things technologies in two different ways:
at the frontend and at the backend.

We use RFID technology as frontend extension for Infor-
mation discovery. E.g., in the ABB use case we focus on
identifying machinery and parts by linking physical items
to named entities via a machine readable nameplate. This
enables physical interaction with both real world systems
and the FPIS connecting physical products and their digital
counterpart. Therefore, the physical objects play in impor-
tant role in practical product information management and
retrieval. In the architecture depicted in figure 7 this is re-
flected by the fact that the mobile application queries both
the real world via the IoT Platform Gateways as well as its
virtual representation via the Semantic Search and Naviga-
tion Services.

The second aspect of Internet of Things integration com-
prises the federation aspect of our FPIS architecture. As
already highlighted in figure 5, the Internet of Things is
a distinguished federation source for the Aletheia system.
However, at the lowest layer of the architecture we have
to deal with (structured, non-human readable) binary data

that is stored or communicated via an arbitrary radio inter-
face. The IoT platform gateways technically abstract a very
heterogeneous IoT hardware landscape that can be found
practically in the field.

Building upon the standard Devices Profile for Web Ser-
vices (DPWS), we can technically and semantically uniquely
identify measurement devices as named entities via an URI.
This URI can be resolved locally via an infrastructureless
discovery mechanism to a Web Service communication end-
point. We use automatic translation mechanisms to gener-
ate platform specific (Web) Service Translators [20] towards
the devices that dynamically translate any communication
to schema-based XML messages. At the level of the IoT
Platform Gateways we can thus provide structured, well-
typed and self-descriptive Web Services interfaces towards
the Measurement Application.

The WSDL interfaces already contain important syntacti-
cal information like data types, minimum and maximum, or
numerical precision of a value but are also used to seman-
tically enrich the information by adding, e.g., information
about quality of the sensor. Such annotation information
can be provided as unstructured text, or as Semantic Anno-
tations for WSDL and XML Schema, or RDFa. The impor-
tant aspect of this gateway architecture is that beyond we
can provide technology independent, homogeneous access to
heterogeneous IoT sources for identification and measure-
ment.

The major challenge when federating real world sensor
information is including necessary context information nec-
essary for an interpretation of such data. Typically, this in-
terpretation is strongly dependent and interlinked with the
real world processes. In the ABB use case, this is the service
and diagnosis tasks performed by a field service engineer on
site. One example is the mapping of sensor readings to lo-
cations and products, which may change over the temporal
domain. The measurement application informs the IoT Data
Provider of such changes. E.g., when an engineer places a
sensor or tracking device on a part for diagnosis or monitor-
ing the part on site or during transportation, the semantic
association between the named product entity and the IoT
device has to be made explicit. Further, when a node is re-
configured or calibrated, the configuration data are also as-
sociated with the consecutive sensor readings, together with
additional annotations and data such as images provided by
the service worker on site. All data relations are captured in
the underlying work flow of the ABB measurement applica-
tion and are serialized as XML, based on a domain specific
schema.

IoT Data Provider interfaces the Data Integration Layer
of the architecture as a structured document-based (XML)
data source. For the ABB use case we have decided not
to embed raw sensor data into the semantic repositories.
The actual raw sensor data is not embedded, but linked
via additional serialized documents. We chose this interface
separation at the current point, because the sensors make
up a significant amount of data that can rarely be stored
efficiently or semantically queried in the proposed repository.
Instead, they are transferred to file servers.

The platform still obtains all the necessary metadata avail-
able that contains part associations, placement, calibration
and configuration information, but can also feature statis-
tical information about the readings such minima, maxima,
or median values aggregated over time or discrete critical

Figure 8: Overview of implemented components

events detected by the IoT devices. By connecting the in-
dividual measurements with machine product information
they can be discovered and accessed later on, e.g., in spe-
cific analyzing applications via the FPIS.

6. PROTOTYPICAL REALIZATION
The presented architecture has been implemented with

the most important components as a fully-working proto-
type within the Aletheia project and applied to real appli-
cation partner data. In this section, we give an overview of
the technical realization and used components, present the
different semantic-aware user interface modes for accessing
information, explain the activities that stand behind the in-
formation integration in the Service Hub, briefly describe
the realization of data source lifting mechanisms and give an
end-to-end example that shows the interaction of the tech-
nical components.

6.1 Overview of Technical Realization
Figure 8 gives an overview of the realized components and

the technologies used for them. This implementation archi-
tecture can be seen as one possible instance of the reference
architecture presented in section 5.

The front end of the Aletheia prototype has been realized
as an AJAX Web application based on Google Web Toolkit
(GWT2). This asynchronous user interface technology was
chosen to account for the need for sending multiple complex
semantic queries to the Service Hub. Hence, partial results
can be presented to the user before all queries complete,
greatly improving the user experience.

The Aletheia Service Hub currently encompasses 4 major
services for importing facts into the repository, searching
for structured information, searching semantically indexed

documents and annotating text. As syntactic and uncer-
tain repositories, we have integrated an Ontobroker [2] and
a Sesame store [7]. With these choices, we take advantage
of the Ontobroker support for querying large numbers of
instances over live data sources (e.g. relational databases
over JDBC) and of the interoperability of Sesame with the
Aperture extraction framework [3] applied inside the Web
crawling data provider (crawler engine). The semantic docu-
ment annotation service is implemented based on the UIMA
framework. Other facts providers have been integrated via
the import service’s very lightweight interface that can easily
be accessed from many different platforms, including from
Microsoft Excel macros.

In order to support the different domain models of indi-
vidual use case participants, we utilize the Ontobroker ca-
pability of managing several ontologies in terms of multiple
modules and respective namespaces. For example, the pro-
totype can be switched from an ABB centric ontology to one
that has been developed at BMW, simply by an appropriate
selection in the front end, as shown in Figure 9.

6.2 User Interaction Paradigms
The Aletheia Frontend supports user to find the product-

related information they need with appropriate user inter-
faces. Depending on the situation of the user, different in-
teraction paradigms are suitable. We implemented several
paradigms that leverage the knowledge of how the objects
of interest are related to each other (via the links in the Se-
mantic and Uncertain Repository). The focus was on realiz-
ing generic mechanisms that can generate the user interface
completely from the domain models, without any domain-
specific programming. Furthermore, the goal was to support
complex structured queries (to take advantage of the seman-
tic relationships), while not forcing the user to think in terms
of complex queries (to account for the analyzed non-IT user
needs in the PLM domain).

6.2.1 Search
Search in this context means that users enter text in a

search box which is interpreted as a structured query, us-
ing the ontology of the Semantic Repository as background
knowledge. The user is supported to disambiguate the query
so that he can find precisely what he meant. In the pro-
totype, this takes the form of auto-complete suggestions.
The system can support homonyms (disambiguating differ-
ent things with the same name) and synonyms (finding the
same thing via different names). The search text can be
interpreted as a structured query by taking into account
semantic relationships (e.g. “Mueller service job reports”:
finding all reports on jobs performed by a service engineer
Mueller). The system can explain to the user why a result
was found with natural text or graphically.

6.2.2 Navigation
The most straight-forward way of leveraging the seman-

tic relationships in the Semantic Repository is to offer users
links to related information in the user interface. For ex-
ample, when information about a machine aggregated from
multiple databases is displayed, interesting links point to
information on spare parts for the machine, to a list of doc-
uments that mention the machine and to other machines
that are also mentioned in the documents.

6.2.3 Graph Exploration

Figure 9: Selection of different ontology configurations by users in the prototype

Figure 10: Search example

Figure 11: Navigation example

Figure 13: Filtering example

In some cases, it makes sense to partially display the in-
formation graph from the Semantic Repository itself to the
user and let him navigate and explore the nodes by expand-
ing neighboring nodes and links. This allows the user to
understand complex dependencies that are otherwise hard
to see (e.g. “Who worked together in which service jobs?”).

6.2.4 Filtering
Another paradigm we realized for finding information is

to narrow down a list to the entries of interest by applying
multiple filters (e.g. from a list of engineers to only those
engineers who have worked at a specific site; or: from a list
of engineers to the list of sites at which these engineers have
worked).

6.3 Information Integration Activities
A core function of the Aletheia system realized in the Ser-

vice Hub is the semantic integration that makes the data
from the different sources correspond to one unified human-
understandable model. We describe a number of activities
that are necessary to establish integration with the imple-
mented Service Hub in the following sub sections.

6.3.1 Domain Modeling
The first and foremost pre-requisite for setting up the Ser-

vice Hub is that someone has modeled the domain of interest
by creating an ontology. The ontology defines, among other
things, classes (e.g. “company”, “product”), relationships
(e.g. “sells”) and attributes (e.g. “company name”). The
modeling is performed by domain experts that have been
trained or are supported by ontology engineering experts. It
is created based on a formal language (in our case: F-Logic)
with the help of an ontology tool (in our case Ontostudio).

The modeling task must necessarily be manual and can-
not be automated, because the model is supposed to reflect
how humans understand the domain and how they want to
view and search for the data. In practice, the ontology of-
ten already exists partially in other forms (e.g. an Excel
sheet with product categories) that can be imported into

the ontology.

6.3.2 Source Mapping
Structured data residing in different data sources have dif-

ferent schemas (e.g. different database schemas and XML
schemas). When the data sources are lifted to graph rep-
resentations, they usually adhere to different technical on-
tologies that have been automatically generated from the
data source schemas. In order to resolve the semantic gap
between the different ontologies and make the data sources
queryable according to the central domain ontology, we de-
fined mappings. We created mapping rules with the help of
tools, which were then executed by the semantic middleware
automatically (e.g. when a query is posted for instances of
the domain ontology class “Company”).

The mapping cannot be fully automated, because only hu-
mans can say with certainty what the meaning of the class
and attribute names are in the different schemas. The map-
ping process can however be supported semi-automatically
with algorithms that detect similarities in the schemas to be
mapped.

Furthermore, we were faced with XML schemas that con-
tain implicit references. These kind of internal links between
nodes are important in order to model relationships, but
current tools do not recognize them. Thus, we provided a
semi-automatic mapping tool that extends JXML2OWL [22]
with additional attribute to node mapping features. That
way, an attribute or text node id of a XML element can be
marked as a reference to another node which contains an at-
tribute with the same content as id. This solution provides
an increased flexibility for schemas that don’t adhere to the
XLink [9] specification.

6.3.3 Link Generation
One important aspect of the semantic integration is the

computation of the semantic links that capture how the ob-
jects of interest are related to each other. In some cases, we
derived these with certainty from the data sources, e.g. from
foreign-key-relationships in a database schema or the respec-
tive technical ontology. Here, we manually defined rules for
detecting these relationships and making them explicit.

In other cases, if there was no certain rule, the links had
to be computed by comparing individual instances and their
attribute values. Here, we developed a tool that proposes
links based on similarity measures and having a human con-
firm or alter these links.

6.3.4 Text Analysis
In order to fill the Uncertain Repository with information

on unstructured data, text has to be analyzed so that ex-
plicit links can be drawn between terms occurring in the
text and the objects in structured sources (e.g. linking
the mentioning of a company name in a bill to the cus-
tomer entry in a CRM system). In the project, named en-
tity recognition was used to identify entities (i.e. concepts
and instance data) in text by transforming available struc-
tured background knowledge into dictionaries valuable for
text based search. Typically, each entity is associated to
different human readable natural language representations
(labels), which occur in text corpora. Each such represen-
tation is treated as a cue for the according instance. Each
cue has a certain associated information content which is
based on the frequency of that term in structured data. An

Figure 12: Graph exploration example

Figure 14: A domain ontology modeled in a tool

Figure 15: Example of mapping between technical data source ontology (left) and central domain ontology
(right)

example for a created dictionary looks like that:

<token canonical="http://.../a1/bmw#Thorax">

<variant base="beifahrerairbag" i="4.515037"/>

<variant base="Thorax" i="5.767800"/>

<variant base="thorax" i="4.615120"/>

<variant base="gurtsystem" i="4.301462"/>

<variant base="fahrerairbag" i="4.515037"/>

</token>

Documents are tokenized and annotated using the cue-
based dictionary. Tokens and entity annotations are per-
sisted in separate query-optimized indices containing addi-
tional meta-data about the annotation process. In addition
global document corpora statistics (mean document length,
document count) needed for ranking are calculated. Having
this information, different ranking schemes based are ap-
plied on the information content, TF-IDF and the distance
of terms and entities to each other within one document.

The creation of dictionaries from the structured data and
the text analysis are fully automated processes. Human
manual effort might have to be necessary when a new docu-
ment corpus has to be integrated that uses language that is
not well covered by the ontology / the structured data. In
this case, the ontology might have to be extended with new
labels.

6.4 Data Source Lifting
In order to integrate different data sources, the hetero-

geneity of the different media types and data representa-
tion formats has to be overcome. This is achieved by data
providers that make the data from the sources available as
graphs in an RDF format that corresponds to source-specific
F-Logic ontologies. This step can be done fully automati-
cally, as it is just a syntactic transformation.

• Database tables are transformed into classes, rows into
instances and columns into attributes.

• XML nodes are transformed into instances or attributes,
XML Schema types into classes, XML child nodes are
linked to their parent nodes with relationships.

• Spreadsheets are transformed in a very similar way as
databases. The transformation can be done.

• For unstructured documents, the metadata attributes
(e.g. title, author, date of creation etc.) are trans-
formed into RDF statements. The text itself is left as
analyzed later by the annotation service.

Example
The screenshot in Figure 10 shows an example where a

user searches for configurations of devices used in the Chemi-
cal industry branch with AC it their name. The search terms
are entered in a similarly simple way as users know from
public Web search engines. However, to leverage the seman-
tic model underneath, auto-complete suggestions with terms
from the domain are offered to the user. This is supported
by the fact search service that uses the ontology index of
the semantic repository. When entered, the keyword query
is than interpreted by the fact search service as a structured
query, depending on disambiguated instance names, class
names, role names and free-text terms. This is then exe-
cuted by the semantic repository over the ontology designed

Figure 16: F-Logic code sample of the ontology

collaboratively by domain and ontology experts. An excerpt
of the ontology, modeled in FLogic, is shown in Figure 16.

The reasoner executes the query and, based on mapping
rules (cf. section 6.3.2), decides, for which sub queries to per-
form database SQL queries via the JDBC builtin (similar as
in [2]). Other facts necessary for the query may be perma-
nently stored in the semantic repository, e.g. imported from
an XML dump of a legacy application via the XML importer
before query time. After query execution, graphs are gener-
ated that explain to the user, why each particular found in-
stance is considered to be a match for the entered keywords.
The same search box can also return documents from the
uncertain repository. In this case, the query is interpreted
by the document search service, not as a structured query,
but as a vector of free text terms (via the document full-text
index in Lucene) and disambiguated URIs (via the semantic
annotations in the RDFS store).

7. EVALUATION AND DISCUSSION
Although the work on the reference implementation of

Aletheia is still in progress, we already evaluated the ini-
tial results with regards to aspects such as usability, search
functionality, data sources, interfaces, and added value due
to the semantic technologies.

7.1 Internal Evaluation
The evaluation involved all Aletheia project members and

has been conducted using a survey on the prototype variants
built for all of the five scenarios. With ten responses and a
total of 59 rated criteria, this initial feedback was mixed:

• In summary, an earlier version of the implementation
in Section 6 received 26 positive, 15 negative and 15
“partially fulfilled” ratings, with regards to the col-
lected use cases and requirements. Here, partially ful-
filled means that the evaluator did see some of the
capabilities implemented w.r.t. a certain requirement,
but not in its entirety that is expected for a final pro-
totype.

• Several of the individual solutions that have been im-
plemented for scenario-specific use cases, such as the
recognition of product terms in full-text requests and
graph visualizations, received very positive feedback,
both for highlighting the benefits of semantics and us-
ability of the search function. Hence, we currently in-
tegrate them as components to the reference imple-
mentation.

• As expected, some evaluators criticised that not all
potential information sources are integrated already.
They evaluated a comparatively early version of the
prototype. Since then, the available data providers
have been extended considerably.

• The benefit of semantics is not obvious for a few use
cases related to the Internet of things. The implemen-
tation did not utilize this information in conjunction
with the stored knowledge, and the higher-level inte-
gration is clearly necessary to show the advantage.

We will present the results of a more comprehensive eval-
uation to be executed later this year. Hence, we rather dis-
cuss the lessons learned to date with the development of this
FPIS.

7.2 Discussion
Within the Aletheia research project, we prototypically

set up an integrated browsing and searching application over
heterogeneous product data sources in realistic industry en-
vironments, using a technology that represented the inte-
grated information as a graph. In principle, this proved to
be a feasible approach that offers a number of advantages
acknowledged by the application partners.

The most important advantage is that users can intu-
itively enter search queries whose answers require knowl-
edge of how objects are related to each other (independently
from where the objects are stored). The relationships can
also be leveraged for graph visualizations to provide end
users with advanced insight into complex dependencies in
the underlying data. Moreover, the graph model makes it
easier to let users access all relevant pieces of information to-
gether, including documents related to objects described in a
database. Such features can be supported in a generic way
for all relationships, without the need to hardcode special
cases. It is generally not necessary to result to heavy-weight
semantic technology with advanced reasoning capabilities.
Instead, it is sufficient to be able to view and query data
according to a graph model.

As shown above, the current reference implementation ex-
hibits most of the benefits of the intended Aletheia system.
Although the architecture proposes the federation of at least
structured information at the time a client actually poses a
query, we noticed that this is difficult to accomplish. For
the auto-complete functionality presented in Figure 10, an
index of the name and other properties a semantic entity can
be referred to must be available in the system in order to
meet response time constraints (latency). This functionality
is present in the employed semantic repository implemen-
tation, but is limited to the facts stored in the repository.
Even though the repository federates information from other
structured sources like relational databases, it does not make
them available on this index unless this data is materialized,
i.e. replicated to the repository.

As we argumented in section 4.2, uncertain semantic in-
formation are separated from syntactic data, e.g. a full-text
index, in the proposed architecture. While this is a sensi-
ble decision due to the different nature of those repositories,
we employed the Sesame LuceneSail [16] component which
combines both aspects. Hence, the management of extracted
facts like <Document1> <isAbout> <DriveComponentA> is ac-
complished by the same component that stores the full-text
index of that document.

We further noticed that the traceability of federated in-
formation is difficult. This is due to the overhead of storing
provenance information for every fact in the repository, and
gets even more complicated if the information should be an-
notated with confidence or trust ratings. While initially con-
sidering RDF reification, we also studyied whether named
graphs can be used appropriately for such annotations. The
requirement of federated ranking would benefit from such
reliable confidence assertions. We found, however, that this
poses a high processing load on the system that can’t be
handled using current technology for the required amount
of information.

The authentication and, to a greater degree, the autho-
rization of users to access certain information remains an
issue. Considering the federation during a client’s request,
existing single-sign-on (SSO) solutions can be applied. As
the auto-complete issues have shown, the ad-hoc federation
is an approach that causes several difficulties. However, fed-
erating the information prior to actual requests and, hence,
not requesting the original information sources requires the
repository to keep track of access rights to individual infor-
mation. Additionally, this causes the data providers to de-
termine and relay this authorization information in the first
place. This is a critical aspect for all studied scenarios, and
is subject to current work on integrating an authentication
and authorization component.

Collectively, the current implementation provides a com-
plete “vertical cut” through the architecture, integrating dif-
ferent heterogeneous data sources. It also proved to be ap-
plicable to different domains by means of switching the se-
mantic model, i.e. the ontology, and connected data sources.

8. CONCLUSIONS
In this paper, we have presented an architecture that sup-

ports the federation of heterogeneous information, originat-
ing from various data sources and arising throughout the
product lifecycle. We propose this solution with regards to
the limitations of current product information management
products. These are less flexible than this semantic approach
and usually only cover few aspects of the product lifecycle.

Prior to that, we generalized a number of requirements
derived from multiple real-life scenarios. The proposed ar-
chitecture and associated reference implementation enables
the exploration of information, both using semantic search
and exploring related information. Most of the required data
sources have already been integrated, based on generic so-
lutions like XML to RDF transforms, in order to provide
the desired all-embracing view. Internet of Things devices,
such as wireless sensor networks and RFID tags, can be in-
tegrated using the proposed gateway architecture. Existing
frameworks for information extraction are attached that in-
tegrate unstructured information, using the respective do-
main ontology and existing knowledge.

The presented information can also be modified by the
users of the system, thereby keeping the product informa-
tion up to date, even though these modifications are not per-
formed at the information’s origin. Finally, we presented our
vision of enabling collaboration of such federated product
information systems between different organisations, which
is a requirement for exploiting the full potential of such a
solution.

Compared to an earlier publication [31], this paper presents
our approach and related work in much more detail. It also

discusses the Internet of Things integration and more thor-
ough results regarding the reference implementation.

9. ACKNOWLEDGMENTS
This work was partly funded by the German Ministry of

Education and Research under the research grant number
01IA08001.

We would like to thank many Aletheia project members
contributing to this architecture and reference implementa-
tion, including but not limited to Bernd Stieger, Nic Fan-
tana, Thomas Janke, Tobias Münch, Robert Rieger, Sandro
Reichert, and Maximilian Walther, as well as project part-
ners for fruitful discussions on use cases and requirements.

10. REFERENCES
[1] Aletheia project consortium. Aletheia - semantic

federation of comprehensive product information.
http://www.aletheia-projekt.de/, 2010.

[2] J. Angele and M. Gesmann. Data Integration using
Semantic Technology: A use case. In Rules and Rule
Markup Languages for the Semantic Web, Second
International Conference on, pages 58–66, 2006.

[3] Aperture Framework. A Java framework for getting
data and metadata. http://aperture.sourceforge.net/.

[4] W. Behrendt, A. Gangemi, W. Maass, and
R. Westenthaler. Towards an ontology-based
distributed architecture for paid content. In
Proceedings of the Second European Semantic Web
Conference. Berlin, Springer, 2005.

[5] R. Bhagdev, S. Chapman, F. Ciravegna, and
V. Lanfranchi. Hybrid search: Effectively combining
keywords and ontology-based searches. In 5th
European Semantic Web Conference (ESWC2008),
pages 554–568, June 2008.

[6] C. Bizer, T. Heath, and T. Berners-Lee. Linked
data–the story so far. International Journal on
Semantic Web and Information Systems, 5(3):1–22,
2009.

[7] J. Broekstra, A. Kampman, and F. Van Harmelen. A
Generic Architecture for Storing and Querying RDF
and RDF Schema. The Semantic Web–ISWC 2002,
pages 54–68, 2002.

[8] J.-S. Brunner, L. Ma, C. Wang, L. Zhang, D. C.
Wolfson, Y. Pan, and K. Srinivas. Explorations in the
use of semantic web technologies for product
information management. In WWW ’07: Proceedings
of the 16th international conference on World Wide
Web, pages 747–756, New York, NY, USA, 2007.
ACM.

[9] S. J. DeRose, E. Maler, D. Orchard, and N. Walsh.
Xml linking language (xlink) version 1.1. Technical
report, W3C, 3 2010.

[10] D. Ferrucci and A. Lally. UIMA: an architectural
approach to unstructured information processing in
the corporate research environment. Nat. Lang. Eng.,
10(3-4):327–348, 2004.

[11] J. J. Garrett. Ajax: A new approach to web
applications. Essay at http://www.adaptivepath.

com/ideas/essays/archives/000385.php, February
18, 2005.

[12] G. Kasneci, M. Ramanath, F. Suchanek, and
G. Weikum. The YAGO-NAGA approach to

knowledge discovery. SIGMOD Rec., 37(4):41–47,
2008.

[13] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The
information manifold. Proceedings of the AAAI 1995
Spring Symp. on Information Gathering from
Heterogeneous, Distributed Environments, pages
85–91, 1995.

[14] S. Kunz, F. Brecht, B. Fabian, M. Aleksy, and
M. Wauer. Aletheia–improving industrial service
lifecycle management by semantic data federations.
International Conference on Advanced Information
Networking and Applications, pages 1308–1314, 2010.

[15] S. Liang, P. Fodor, H. Wan, and M. Kifer.
Openrulebench: an analysis of the performance of rule
engines. In Proceedings of the 18th international
conference on World wide web, WWW ’09, pages
601–610, New York, NY, USA, 2009. ACM.

[16] E. Minack, L. Sauermann, G. Grimnes, C. Fluit, and
J. Broekstra. The sesame lucenesail: Rdf queries with
full-text search. Technical Report 2008-1, NEPOMUK,
2008.

[17] J. Paralic and I. Kostial. Ontology-based information
retrieval. Information and Intelligent Systems,
Croatia, pages 23–28, 2003.

[18] L. Patil, D. Dutta, and R. Sriram. Ontology-based
exchange of product data semantics. Automation
Science and Engineering, IEEE Transactions on,
2(3):213 – 225, July 2005.

[19] G. Reif, T. Groza, S. Scerri, and S. Handschuh. Final
NEPOMUK Architecture – Deliverable D6.2.B. Public
deliverable of the NEPOMUK project, Dec 2008.

[20] T. Riedel, N. Fantana, A. Genaid, D. Yordanov,
H. Schmidtke, and M. Beigl. Using web service
gateways and code generation for sustainable IoT
system development. In Internet of Things (IOT),
2010, pages 1–8, 2010.

[21] C. Rocha, D. Schwabe, and M. P. Aragao. A hybrid
approach for searching in the semantic web. In
Proceedings of the 13th international conference on
World Wide Web, WWW ’04, pages 374–383, New
York, NY, USA, 2004. ACM.

[22] T. Rodrigues, P. Costa, J. Cardoso, and J. Fernandes.
Jxml2owl.
http://jxml2owl.projects.semwebcentral.org,
2006.

[23] S. Schenk, C. Saathoff, A. Baumesberger, F. Jochum,
A. Kleinen, S. Staab, and A. Scherp.
Semaplorer-interactive semantic exploration of data
and media based on a federated cloud infrastructure.
Web Semant., 7(4):298–304, 2009.

[24] T. Schütz. D11.1.1.b concept and design of the
integration framework. Public deliverable of the
Theseus-Ordo project, Sep 2008.

[25] S. Soga, Y. Hiroshige, A. Dobashi, M. Okumura, and
T. Kusuzaki. Products lifecycle management system
using radio frequency identification. In Proc. of IEEE
Int. Conf. on Emergent Technologies and Factory
Automation (ETFA99), page 1459–1467, 1999.

[26] V. Srinivasan, L. Lämmer, and S. Vettermann. On
architecting and implementing a product information
sharing service. Journal of Computing and
Information Science in Engineering, 8(1):011006,

2008.

[27] A. Tiwari, F. L. Lewis, and S. S. Ge. Wireless sensor
network for machine condition based maintenance. In
Control, Automation, Robotics and Vision Conference,
2004. ICARCV 2004 8th, volume 1, page 461–467,
2005.

[28] D. T. Tran, P. Cimiano, S. Rudolph, and R. Studer.
Ontology-based interpretation of keywords for
semantic search. In Proceedings of the 6th
International Semantic Web Conference (ISWC’07),
pages 523–536, Busan, Korea, NOV 2007.

[29] T. Tran, P. Haase, H. Lewen, O. M. Garcia,
A. Gomez-Perez, and R. Studer. Lifecycle-support in
architectures for ontology-based information systems.
In Proceedings of the 6th International Semantic Web
Conference (ISWC’07), November 2007.

[30] T. Tran, H. Wang, and P. Haase. SearchWebDB: Data
web search on a pay-as-you-go integration
infrastructure. Technical report, University of
Karlsruhe, 2008.

[31] M. Wauer, D. Schuster, and J. Meinecke. Aletheia - an
architecture for semantic federation of product
information from structured and unstructured sources.
Paris, France, 2010. ACM.

