

Abstract—This paper outlines the advantages of applying

object oriented modeling principle to sensor network
programming. This closes the gap between programming
principles in the world of small things and big servers. We show
that typing based on classes can make algorithms robust to
changing data layouts and implementation changes. Furthermore
we present an implementation based on ultra-lightweight java
virtual machine running on low-power sensor nodes.

Keywords—Object oriented languages, wireless sensor nodes,
system architecture

I. INTRODUCTION

Object oriented programming has become the predominant
language used in newly created software. Its virtual machine
based runtime makes it easy to port software to a variety of
platform without the need of changing implementations. The
success of the J2ME (Java 2 Mobile Edition) manifested by
millions of cell phone application has shown that OO based
programming accelerates development cycles on highly
embedded systems Sun introduced with SPOTS
(http://www.sunspotworld.com/) platform a 32bit networked
embedded system that resembles a sensor node. At the same
time the Standard and Enterprise Edition of Java are the
programming interface for many commercial business and
engineering products.

In order to show how classical ultra-low power 8bit micro-
controller based sensor systems can profit from a java virtual
machine and can be integrated into a world of object oriented
modeling tools we have implemented a Java implementation
for Particle Sensor Nodes (http://particle.teco.edu).

The variety of possible sensors and values makes it many
difficult cases to interpret the data correctly, for both locally
on a senor node and remotely on PC system. In this poster we
want to show how object orient modeling and object level
helps to build robust data processing algorithm on sensor
nodes.

The work presented in this poster was partially funded by the European

Community under contract no. 4270 and by the Ministry of Economic Affairs
of the Netherlands under contract no. 03060.

 Till Riedel is with TecO/Universität Karlsruhe, Vincenz-Prießnitz-Str. 3,
76131 Karlsruhe, Germany (e-mail: riedel@teco.edu).

Andreas Arnold is with TecO/Universität Karlsruhe, Vincenz-Prießnitz-
Str. 3, 76131 Karlsruhe, Germany (e-mail: arnold@teco.edu).

Christian Decker is with TecO/Universität Karlsruhe, Vincenz-Prießnitz -
Str. 3, 76131 Karlsruhe, Germany (phone: +49 721 464704 15; e-mail:
cdecker@teco.edu).

Figure 1: Abstract Sensor Interfaces encapsulation of data

II. OBJECT ORIENTED SENSORS

We follow the vision of classical object oriented (OO)
modeling approaches such as [[1]] when we abstract real-
world items and data by objects and classes. In the following
we want to shortly describe just a few advantages of such an
approach for sensor networks.

A. Abstract Sensor Classes

Objects encapsulate and hide the details about an the
implementation and data layout. . Many information
processing algorithm in sensor network tend to have a binding
against the layout of the underlying data. This makes it
difficult to reuse code and eventually slows down any
development process.

By using abstract sensor classes generic algorithms on e.g.
on scalar valued sensor data can be developed and bound to a
concrete hardware instance at a late stage, even at runtime. On
the most abstract level sensors and sensor values can be used
polymorphic as via a very generic interface as shown in Figure
1. The „instance of“ operator and typecasting also allows
disambiguation of object classes at a later stage of the
processing logic again.

B. Serialization

The data encapsulation especially proves valuable when
communicating data. By establishing a common id scheme it is
sufficient to serialize the sensor data object together and
transmit it to another party in the network. Because the object
encoding is fixed inside the class files it is automatically
distributed together with the interfaces and the processing
logic inside the class. Such a system clearly separates data
from layout and code and reduces the typing overhead to a
minimum.

Poster Abstract: An OO Approach to Sensor
Programming

Till Riedel, Andreas Arnold, Christian Decker

C. Type Safeness

One of the additional advantages of programming data
processing in the Java language over other imperative
programming approaches is its type-safeness. On micro-
controller based hardware environments this is important, as
there is no memory protection enforced in hardware or by the
operating system. Type violations in user code can have
serious side effects on other systems. Like demonstrated in
SPIN project [2], type safe languages allow execution of user
code at system privileges. This is why we see another focus of
Java in the implementation of a robust operating system like
runtime eviroment. A basic set of performance critical
subsystems like bus access will still be implemented by
compiled machine code. This provides a very thin abstraction
layer. Higher abstraction layers providing like sensor sampling
and conversion can be loaded dynamically and be executed
within the VM. This allows us to design adaptable re-
configurable system architecture.

Figure 2: Particle VM Memory Layout

III. I MPLEMENTATION

The implementation of the ParticleVM is based on the
lightweight java byte-code interpreter NanoVM [3] and runs
on 8bit micro-controllers with a minimum amount of memory.
The implementation covers all static features of the Java
programming language as it uses code generated by standard
java compilers such as the JDK javac (see http://java.sun.com)
or jikes (see http://jikes.sf.net). The class files are further
optimized on byte-code level, e.g. by elimination of the
constant pool.

In our version VM all language features except for
exceptions and reflection have been implemented. There is a
minimalist java runtime environment for Particle Computers,
which maps the basic system functionality provided by the
enabling services such as networking and sensory services.
The implementation especially covers all performance critical
memory, bus and rf access routines.

The current 2/32 Particle includes a Microchip PIC18F6720
micro controller. This low power MCU has an instruction
cycle of 0,2 µs and includes only 4K of RAM and 128K of
code memory. In contrast to directly executed machine code
the 512K of external Flash memory can be additionally used as
program memory holding Java classes.

The current implementation of the byte code interpreter
occupies 60KB of code memory and 1.5K of memory.
Additionally 45KB of code memory and 0.5K of RAM are
dedicated to the low-level native API for the sensor note with
basic operating system features and the RF functionality
including message buffers. This leaves 1.5 KB of heap
memory that can be used by any user program running on top
of the ParticleVM. The complete memory layout is shown in
Figure 2.

IV. PERFORMANCE

The performance characteristics of our first naive
implementation are outlined in Table I. Especially code
compression and runtime overhead can, however, further be
optimized in future version. The numbers were measured
benchmarking a simple aggregation functions on sensor
values.

The high numbers on the interpretation overhead still show
that encapsulated code does always come at higher cost. The
question is if at the end of the day the reduction of complexity
can even make up this.

V. CONCLUSIONS

We showed in this paper that object oriented programming
on sensor nodes using java can solve many of the interfacing
problems between sensor network applications. A lightweight
implementing of a java VM makes it possible to conclude the
fully integrate such platforms into a world of backend
architectures on language level without proposing large scale
middleware solutions. In our ongoing work on this matter want
show how sensor networks can be integrated into larger scale
application models without loosing the flexibility of a tiny, low
power hardware platform.

VI. REFERENCES
[1] Booch, Grady. Object-Oriented Analysis and Design with Applications.

Addison-Wesley. ISBN 0-8053-5340-2.
[2] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün

Sirer, Marc Fiuczynski, David Becker, Susan Eggers, Craig Chambers.
Extensibility, Safety and Performance in the SPIN Operating System,
Proceedings of the 15th Symposium on Operating Systems Principles,
pp 267-284, Copper Mountain, Colorado, 1995

[3] Thomas Fuhrmann, Till Harbaum, A Platform for Lab Exercises in
Sensor Networks. 4th GI/ITG Fachgespräch Sensornetze Zürich,
Schweiz, March 23-24, 2005 pp. 29-32

TABLE I
INITIAL BENCHMARK RESULTS

 avg. code size 40%
 avg. interpretation overhead 3000%

