Poster Abstract: An OO Approach to Sensor
Programming

Till Riedel, Andreas Arnold, Christian Decker

Abstract—This paper outlines the advantages of applying
object oriented modeling principle to sensor netwdc
programming. This closes the gap between programmin
principles in the world of small things and big severs. We show
that typing based on classes can make algorithms bost to
changing data layouts and implementation changes.uRhermore
we present an implementation based on ultra-lightwight java
virtual machine running on low-power sensor nodes.

Keywords—Object oriented languages, wireless sensor nodes,
system architecture

. INTRODUCTION

Object oriented programming has become the predomin
language used in newly created software. Its Minoachine
based runtime makes it easy to port software taréety of
platform without the need of changing implementagioThe
success of the J2ME (Java 2 Mobile Edition) matef@dy
millions of cell phone application has shown thad @ased

SensorManager | manages Sensor SensorValue

0."
>

rawValue : int

GetRawValue() : int
GetValue() : SensorValue
Enable() : void

Disable() : void

i

LightSensor

ToString() : String
GetRawValue() : int
GetFloatValue() - float

I

PressureValue

PressureSensor Lightvalue

() zint () zint

a ToString() : String
GetValue() : SensorValue GetValue() : SensorValue

GetFloatValue() : float

ToString() : String
GetFloatValue() : float

Figure 1: Abstract Sensor Interfaces encapsulatiaata

We follow the vision of classical object oriente@)
modeling approaches such as [[1]] when we abstraak
world items and data by objects and classes. Irdl@wving
we want to shortly describe just a few advantagesuoh an
approach for sensor networks.

OBJECTORIENTED SENSORS

programming accelerates development cycles on jhighl

embedded systems Sun introduced with
(http://Aww.sunspotworld.com/) platform a 32bit wetked
embedded system that resembles a sensor nodehe Aaime
time the Standard and Enterprise Edition of Jawa the
programming interface for many commercial businass
engineering products.

In order to show how classical ultra-low power &hitro-
controller based sensor systems can profit frormva pirtual
machine and can be integrated into a world of dbjeented
modeling tools we have implemented a Java implesmtiemnt
for Particle Sensor Nodes (http://particle.teco)edu

The variety of possible sensors and values makesity
difficult cases to interpret the data correctly; Bwth locally
on a senor node and remotely on PC system. Irptster we
want to show how object orient modeling and objestl
helps to build robust data processing algorithm semsor
nodes.

The work presented in this poster was partiallydiedh by the European
Community under contract no. 4270 and by the Mipisf Economic Affairs
of the Netherlands under contract no. 03060.

Till Riedel is with TecO/Universitat Karlsruhe, Mienz-PrieRnitz-Str. 3,
76131 Karlsruhe, Germany (e-mail: riedel@teco.edu).

Andreas Arnold is with TecO/Universitat Karlsruhéncenz-PrieRRnitz-
Str. 3, 76131 Karlsruhe, Germany (e-mail: arnold@zedu).

Christian Decker is with TecO/Universitat Karlsruhéncenz-Prie3nitz -
Str. 3, 76131 Karlsruhe, Germany (phone: +49 7247088 15; e-mail:
cdecker@teco.edu).

SPOTSA. Abstract Sensor Classes

Objects encapsulate and hide the details abouthan t
implementation and data layout. Many information
processing algorithm in sensor network tend to kabénding
against the layout of the underlying data. This esakt
difficult to reuse code and eventually slows downy a
development process.

By using abstract sensor classes generic algoritims.g.
on scalar valued sensor data can be developedandito a
concrete hardware instance at a late stage, evemtahe. On
the most abstract level sensors and sensor vatuebe used
polymorphic as via a very generic interface as shmwFigure
1. The ,instance of* operator and typecasting aows
disambiguation of object classes at a later stafjehe
processing logic again.

B. Serialization

The data encapsulation especially proves valualiienw
communicating data. By establishing a common ieges@hit is
sufficient to serialize the sensor data object tiogre and
transmit it to another party in the network. Be@atlse object
encoding is fixed inside the class files it is amétically
distributed together with the interfaces and thecpssing
logic inside the class. Such a system clearly sg#pardata
from layout and code and reduces the typing ovettieaa
minimum.

C. Type Safeness

One of the additional advantages of programming dat
processing in the Java language over other imperati
programming approaches is its type-safeness. Ommic
controller based hardware environments this is e, as
there is no memory protection enforced in hardveauigy the
operating system. Type violations in user codetze
serious side effects on other systems. Like deretest in
SPIN project [2], type safe languages allow executif user
code at system privileges. This is why we see andttus of
Java in the implementation of a robust operatirsgesy like
runtime eviroment. A basic set of performance aiti
subsystems like bus access will still be implengibtg
compiled machine code. This provides a very thitralstion
layer. Higher abstraction layers providing like sensampling
and conversion can be loaded dynamically and beutee
within the VM. This allows us to design adaptatde r
configurable system architecture.

v

Particle VM (1.5KB)
Interpreter stack, buffers, ...

VM-Heap
(1.5KB)

ParticleOS
(0.5KB)
3.5KB

ysey} spooayhg/eleq Usej) weiboid

Figure 2: Particle VM Memory Layout

IIl. | MPLEMENTATION

TABLE |
INITIAL BENCHMARK RESULTS
40%
3000%

avg. code size
avg. interpretation overhead

The current 2/32 Particle includes a Microchip FBE&720
micro controller. This low power MCU has an instian

cycle of 0,2 us and includes only 4K of RAM and K28
code memory. In contrast to directly executed mezkbde
the 512K of external Flash memory can be additignaled as
program memory holding Java classes.

The current implementation of the byte code intetgr
occupies 60KB of code memory and 1.5K of memory.
Additionally 45KB of code memory and 0.5K of RAMear
dedicated to the low-level native API for the sensote with
basic operating system features and the RF furadtign
including message buffers. This leaves 1.5 KB ehmh
memory that can be used by any user program ruroningp
of the ParticleVM. The complete memory layout i®wh in
Figure 2.

IV. PERFORMANCE

The performance characteristics of our first naive
implementation are outlined in Table |. Especiatipde
compression and runtime overhead can, howeveheuthe
optimized in future version. The numbers were mesbu
benchmarking a simple aggregation functions on aens
values.

The high numbers on the interpretation overheddssiw
that encapsulated code does always come at higisér The
question is if at the end of the day the reductibnomplexity
can even make up this.

V. CONCLUSIONS

We showed in this paper that object oriented prognang
on sensor nodes using java can solve many of teefacing

The implementation of the ParticleVM is based oe thProblems between sensor network applications. Atlgight

lightweight java byte-code interpreter NanoVM [3jdaruns
on 8bit micro-controllers with a minimum amountro&émory.
The implementation covers all static features of thava
programming language as it uses code generatetabglasd
java compilers such as the JDK javac (see httpa/gun.com)
or jikes (see http://jikes.sf.net). The class filme further
optimized on byte-code level, e.g. by eliminatioh the
constant pool.

In our version VM all language features except for

exceptions and reflection have been implementeérelis a
minimalist java runtime environment for Particle Qouters,
which maps the basic system functionality providedthe
enabling services such as networking and sensamjces.
The implementation especially covers all perforneanaitical
memory, bus and rf access routines.

implementing of a java VM makes it possible to dade the
fully integrate such platforms into a world of beock
architectures on language level without proposargd scale
middleware solutions. In our ongoing work on thiattar want
show how sensor networks can be integrated ingetascale
application models without loosing the flexibiliby a tiny, low
power hardware platform.

VI. REFERENCES

[1] Booch, GradyObject-Oriented Analysis and Design with Applications.
Addison-Wesley. ISBN 0-8053-5340-2.

[2] Brian N. Bershad, Stefan Savage, Przemyslawdy@k, Emin Giin
Sirer, Marc Fiuczynski, David Becker, Susan Eggé€raig Chambers
Extensibility, Safety and Performance in the SPIN Operating System,
Proceedings of the 15th Symposium on Operatinge8ystPrinciples,
pp 267-284, Copper Mountain, Colorado, 1995

[3] Thomas Fuhrmann, Till Harbaum, A Platform foal. Exercises in
Sensor Networks. "4 GI/ITG Fachgesprach Sensornetze Ziirich,
Schweiz, March 23-24, 2005 pp. 29-32

