
Resource Management for Particle-Computers

Tobias Zimmer, Frank Binder, Michael Beigl, Christian Decker and Albert Krohn
Telecooperation Office (TecO) University of Karlsruhe

Vincenz-Priessnitz-Strasse 1, 76131 Karlsruhe, Germany
http://www.teco.edu

{zimmer,binder,michael,cdecker,krohn}@teco.edu

ABSTRACT
We present a system for real time management of the re-
sources of Particle-Computers. The particle-Computers are
a type of Smart-Its - a Ubiquitous Computing platform
equipped with sensing, computing and communication
hardware. Our management system provides the developer
with easy access to real time features needed in almost
every application for Ubicomp environments that is based
on periodic or sporadic evaluation of sensor values.

Keywords
Real-time, resource management, Particle-Computer, de-
veloper support

INTRODUCTION
Particle-Computers (Figure 1) are technically advanced
Smart-Its [1], a Ubiquitous Computing platform that was
developed in our lab at TecO under the roof of the Smart-
Its project [2]. As most platforms for context aware com-
puting, Particle-Computers feature a number of input chan-
nels including different sensors and inbound communica-
tion, a computation unit for analyzing and processing of
contexts and output channels like actuators and outbound
communication.

Figure 1: Particle-Computer
Many applications in Ubiquitous Computing involve data
gathering or the provision of newly generated context in-
formation in per defined periodic time intervals as well as
sporadic when changes in the environment are detected.
These parallel functions like sampling different sensors,
computing new contexts and communicating can best be
implemented in separate tasks. Thereby it is more impor-
tant to be able to guarantee a maximum time for an opera-
tion to be completed, like taking sample form a sensor, than
just to complete every operation as fast as possible. So we
developed the P-RMS (Particle Resource Management Sys-
tem) to provide real time scheduling functionality of the
resources of Particle-Computers to the software developer.
The system is intended to manage the execution of multiple

(real-time) tasks with a minimal overhead on our Ubiqui-
tous Computing platform.

Software Architecture
For providing maximum performance given the limited
computing power and the small amount of available mem-
ory, the software of the P-RMS was split in two main com-
ponents: a runtime environment, implemented on the Parti-
cle-Computer platform and a development tool running on
a standard personal computer.

P-RMS DEVELOPMENT TOOL
The P-RMS development tool takes over some of the func-
tionality of a real-time resource management system that
can be applied at development time of the software for Par-
ticle-Computers. This is reasonable due to the resulting
reduction of the load on the Particle-Computers at runtime.
Functions that where transferred to a powerful personal
computer are the feasibility computation of a given set of
tasks, the check of the reservation of shared resources other
than the processor and the generation of a runtime configu-
ration for the Particle-Computer program.
To achieve maximum flexibility it is possible to feed the
development tool with a configuration containing different
real-time task-sets that may be executed on the Particle-
Computer alternatively. Thus we overcome the disadvan-
tage of a single predefined task-set at development time.
For all task-sets the feasibility computation is done sepa-
rately. This allows us to switch between the different sets
of tasks at run time on the Particle Computers.
The scheduling we perform for the task-sets is an earliest
deadline first (EDF), non-preemptive scheduling strategy
without inserting idle times and using dynamic priority for
tasks. Multiple sets of real-time tasks and one background
task can be scheduled. The system supports temporal as
well as permanent resource reservations. Schedulability
computation is performed for non-concrete task-sets con-
taining sporadic and periodic tasks according to the formu-
las in Zeng and Shin [3], that were adapted to our special
requirements.

P-RMS RUNTIME ENVIRONMENT
The runtime environment of the P-RMS includes the sched-
uler, a real-time clock (RTC) and management routines for
switching between task-sets and single tasks. It needs about
5,5 Kbytes of program memory; the exact amount of data

memory required depends on the number of tasks in all
task-sets and the maximum number of instances of theses
tasks. It can be computed to
()4*4*96 ksNumbeOfTasfInstancesMaxNumberO ++ bytes.
This is feasible as the Particle-Computers are equipped
with 32 Kbytes of program memory and 1536 bytes of data
memory, leaving enough recourses for user applications,
e.g. a typical test configuration we used contains 4 real-
time tasks and a background task needs about 132 bytes of
data memory.
The P-RMS runtime environment provides various func-
tionalities to the applications running on the Particle-
Computers. This includes the management of periodic tasks
by setting the period length and ensuring that they are
started periodically. Furthermore, the runtime environment
creates sporadic tasks based on input events and sets their
starting time. The runtime environment also includes the
service routines for switching between the different prede-
fined task-sets.

Scheduler
The scheduler is responsible for assigning the processor
and the other allocated system resources to activated tasks
in the order of their priority and running the background
task when the processor is not assigned to a real-time task.
Priorities of the real-time tasks are assigned following the
EDF scheduling strategy. The P-RMS scheduler works
very efficient due to the fact that the schedulability tests are
performed at development time of the application software.
This guarantees that only schedulable task-sets are con-
tained in any given application.

Independent resource allocation

Collective resource allocation

task

resource2
resource1
processor

task

resource2
resource1
processor

1

2

time

time

task

resource2
resource1
processor

task

resource2
resource1
processor

1

2

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

time

time
Figure 2: Assignment of resources performing independ-

ent or collective allocation
Resource assignment in general can be performed inde-
pendent for each available resource or collective for all

resources allocated by one task (see Figure 2). The advan-
tage of independent resource assignment is that any given
resource is allocated only as long as it is needed. This en-
ables maximum parallelism of tasks. The disadvantage of
that approach is, the schedulability of every resource has to
be checked separately and dependencies between reserva-
tions have to be handled explicitly. In the P-RMS we de-
cided to go for collective resource assignment due to the
fact that only one processing unit is available and no virtual
parallelism of tasks can be introduced performing non-
preemptive scheduling. Details on all design decisions in P-
RMS can be found in [4]

IMPLEMENTATION AND TESTING
The implementation of the P-RMS followed the “test first”
strategy, known from extreme programming [5]. Using this
method, tests for the functionality of every unit of code are
designed and implemented prior to the implementation of
the code unit itself. This results in an early detection of
errors in the implementation.

EVALUATION AND FUTURE WORK
The evaluation of the P-RMS is still in process. We were
able to determine some areas where further improvements
in the performance and memory consumption of the system
may be possible. E.g. one major improvement will be a
further reduction of the runtime of the scheduler on the
Particle-Computers. The maximum runtime of the sched-
uler depends on the maximum number of instances of tasks
in a task-set. This maximum is seldom reached, so per-
formance enhancements can be achieved by better predic-
tion of those maxima. Additionally, a simplification of the
RTC structure could reduce the runtime of a RTC-query
from 299 cycles to 26 cycles at the expense of some loss in
comfort in reading the current time and data. Another im-
provement we already identified for future implementation
is the introduction of a hierarchical ordering of the re-
sources. This will simplify the reservation of compound
resources.

REFERENCES
1. Michael Beigl, Tobias Zimmer, Albert Krohn, Christian

Decker, and Philip Robinson. Smart-its - communica-
tion and sensing technology for ubicomp environments.
Technical Report ISSN 1432-7864 2003/2, April 2003.

2. The Smart-Its Project. http://smart-its.teco.edu. 2003.
3. Q. Zeng and K. G. Shin. On the ability of establishing

real-time channels in point-to-point packed-switched
networks. IEEE Transactions on Communications, vol.
42(2/3/4) :1096-1105, February/March/April 1994.

4. Frank Binder. Ressourcenverwaltungssystem für Partic-
le-Computer. Master thesis at the TecO, University of
Karlsruhe. May 2003.

5. Ron Jeffries, Ann Anderson and Chet Hendrickson.
Extreme Programming Installed. Addison Wesley.
ISBN 0-201-708-426 October 2000.

