
A Distributed Resource Management Architecture
for Interconnecting Web-of-Things using uBox

Naoya Namatame
namachan@ht.sfc.keio.ac.jp

Till Riedel
reidel@teco.edu

Takashi Miyaki
miyaki@teco.edu

Yong Ding
ding@teco.edu

Hideyuki Tokuda
hxt@ht.sfc.keio.ac.jp

Michael Beigl
michael@teco.edu

ABSTRACT
Although there are many smart devices and networked em-
bedded object applications using World Wide Web technolo-
gies, it is still a big step to go towards a true Web of Things.
It is e.g. difficult to build ubiquitous WoT applications that
work in and accross multiple environments. Approaches
which aggregate WoT ressources by centralizing all the re-
source information, have problems: total dependency on ex-
ternal infrasture, lack of private WoT management, inflexi-
ble communication patterns and limited dynamic ressource
discovery and mapping. To solve these problems, we pro-
pose uBox, a local WoT platform which can be a stand-alone
server to make your WoT environment, with interfaces to
connect the other local WoT platforms. This way, which
we call uBoXing, we can create World Wide WoT platform
with a distributed architecture. This paper describes the
concept of a distributed resource management architecture,
and how we implement the concept into software. Also, we
will discuss the platform with the example application in
SmartTecO environment.

1. INTRODUCTION
With the IPv4 Internet age at an end and IPv6 at the

doorstep, the Internet of Things vision is gaining a sudden
momentum. However, 340 Million IP addresses per capita
alone do not solve the the problem of making ubiquitous
computing possible. Ubiquitous computing is less about
global network connectivity than new ways of interacting
with physical reality. Therefore it is important to think
more about what the Web of Things (WoT), the application
layer of an Internet of Things. In this paper we show how
WoT applications and the application level communication
structure are strongly connected and what additional infras-
tructure are needed to enable novel ubquitous application
using World Wide Web technology.

We present different aspects that are not sufficiently ad-
dressed by current WWW technology and that will have a
direct effect on WoT application. Especially the dynamic as-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT 2011, June 2011; San Francisco, CA, USA
Copyright 2011 ACM 978-1-4503-0624-9/11/06 ...$10.00.

HOME STREET STORE

Figure 1: An application scenario that our platform
enables. The application is collaborating with dif-
ferent domain of WoTs.

pect of ubiquitous computing infrastructures are often not
covered sufficiently by the current WoT infrastructure. Mak-
ing mobility, proximity and contextual relations between
things explicit is a challenge for a purely technical Internet
of Things. For example, a mobile life logging application
in a smart phone that collects sensor data from the sen-
sors around the user should acquire sensor data from several
WoT domains, as shown in Figure1. This type of applica-
tion is difficult to built on current WoT, since it collaborates
with multiple domains of WoTs.

We show by introducing an active component into the
WoT (the uBox) we can efficiently enable novel application
types in the WoT without changing the application layer.
The uBox is based on a light-weight application layer mid-
dleware that enables room-scale ubiquitous computing, mo-
bile scenarious and Internet-scale interaction by building a
decentralized infrastructures that intergrates into a World
Wide WoT via uBoXing. uBoXing interconnects uBoxes
and allows Internet scale ressource management of WoT de-
vices. In the paper, we will describe our first lessons imple-
menting a number of practical ubicomp applications, that
are motivated and supported by the concept of the World
Wide WoT platform.

2. RELATED WORK AND ANALYSIS
As we motivated in the introduction we hit principle bar-

riers that anybody willing to build ubiquitous applications
on the current infrastructure will quickly face. In the fol-
lowing section we analyze the reason why the WoT needs
more that World Wide Web can offer today and why it still
makes sense to piggyback the development of future ubiqui-
tous computing application to WWW technology.

2.1 Communication Primitives for the WoT

Almost a decade ago Saif, et. al. [1] summarized the
challenges for communication in ubiquitous computing. At
the time he argued against RPC style interaction in middle-
ware systems like CORBA. During the following decade a
huge amount of specialized ubiquitous middleware systems
(such as [2], [3]) were develop that take into account those
consideration. The WoT takes a new pragmatic approach at
enabling ubiquitous application using the world wide web as
an accellerator leaving aside the ballast of other middlewares
but also often being limited by the way the current WWW
works. In the following we like to summarize how existing
WoT platforms can provide a communication platform for
ubiquitous computing application.

2.1.1 Interface Definition
[1] stresses the need of loose coupling between components

and component development in ubiquitous computing. This
analyis actually directly reflects the motivation for RESTful
interfaces in the world wide web. The ”HATEOAS” princi-
ple distinguishes REST style architectures from traditional
client server system. This loose coupling between interfaces
using self-descriptive interfaces can also be found in early
ubiquitous computing paradigms like ConCom [4]. Field-
ings ”software design on the scale of decades” is a perfect
match to the problem of ubiquitous computing technology.
As stated by [5] it makes REST a good choice for build-
ing ubiquitous application in an internet of things. Sen-
sor.Network[6] proposes a sensor data sharing platform that
can upload and retrieve sensor data through RESTful inter-
face. Pachube[7] is also a data aggregation and distribution
platform with RESTful access. The uBox can be seen as a
“pocket” version of such systems.

2.1.2 Device Control, multimedia communication and
Multi-party interaction

However, more flexible interaction patterns that are needed
to support ubiquitous computing application. While the
classical Web is hypertext and document oriented in ubiq-
uitous computing common requirement to receive streams
of content [1]. Such media streams are not only sound or
video but any kind of data that can be digitalized using sen-
sors. This data needs to be streamed live towards multiple
sinks to usefully aggregates, e.g. for context and activity
recognition.

In the document based WWW Atom and RSS feeds are
used for aggregating streams of new data. Such batched
client pull notification via HTTP can also be found in [6]
or [7]. The interactive Web has successfully used AJAX
technology to send data asynchronously to the client. How-
ever, on a technical protocol level AJAX requires heavy in-
teraction between client and server imposes a problem on
ressource constrained devices when serving multiple clients.
The uBox provides a transparent layer that technologically
decouples the systems while allowing AJAX style interac-
tion.

An alternative a data base often serves as a buffer for to
give access to data from IoT devices. In the end databases
founded approaches, which eagerly ”cache” sensing data, like
[6], SenseWeb[8] or SensorBase[9] will also have scaling issues
when it comes to dynamically distributing data. uBoXing
scales by adding more uBoxes.

2.1.3 Logical and physical mobility

a) Star Architecture of WWWoT b) Mesh Architecture of WWWoT

Figure 2: Architectures of WWWoT: a)All the in-
formation of resources from world wide are stored
in centralized server. b) uBoxing:Local nodes con-
tain their own resources and make a network among
them.

[1] points out is that one of the key aspects of ubiquitous
systems is mobility. The World Wide Web is built around
static availabilty of ressources. Wireless system and espe-
cially things however move around physical spaces without
any network barriers with varying link properties. Systems
like dynamic DNS systems and worldwide routing can to
some extend hide the physical mobility of ressources, but the
effects of mobility are visible in the real world and should
thus be in the WoT.

Ubiquitous computing location and communication based
on location as context is an important factor. Many appli-
cations are e.g. based on proximity or other types locality.
Resources within the WoT need namespaces based on a con-
textual view that a static hierarchy like the current WWW
cannot provide. E.g. the temperature for the room as a
ressource can be provided by all the things in the room an
application should be able to address the room as an ab-
stract ressource without querying all devices explicitly.

uBoXing enables distributed, active namespaces. Follow-
ing the plan 9 paradigm [10]. ”every resource in the system,
either local or remote, is represented by a hierarchical file
system; and a user or process assembles a private view of
the system by constructing a file name space that connects
these resources”.

2.1.4 WoT beyond 2011
In order to show how our work fits not only fits the needs

of ubiquitous computing but can be also viewed in the scope
of developments going on in the World Wide Web in general
we picked 3 item from the current OReilly Radar’s Watchlist
[11]:

Real time data As the WWW is becoming more dynamic
with content created automatically and being conti-
nously update there needs to be a paradigm shift for
indexing and searching. With Percolator [12] Google
moves their efforts to process data in the web from
document batch processing towards incremental data
updates. The uBox provides a simple yet scalable way
to introduce real time data processing on a local level
eliminating the necessety for centralized sytems and
extend it via the uBoXing architecture.

The return of P2P ”Many factors are coming together to
drive a search for a new architectural model: the in-

ability of our current provider paradigm to supply the
kind of network we’ll need in the next decade” [11].
The WoT is such a network. In P2P systems every-
body can contribute to the new WWW by adding lo-
cal resources without subscribing to the data gathering
schemes of internet scale service providers. uBoXing
is new way to share sensor and actuatuator ressources
in a P2P fashion.

The meaning of privacy Locality of data also becomes
important as the WWW becomes aware of privacy. If
someone hacks into a centralized server and can an-
alyze and intrude the physical world of millions of
people a crucial barrier is broken. For this reason,
people will hesitate to register sensors or actuators to
a WoT Platform and the real WoT will not happen.
The uBoXing concept clearly addresses those concerns
in the architecture by building on a local system where
ressources are freely accessible in the local domain but
where information, e.g. from aggregated data can be
exposed to the uBoXing network.

3. DISTRIBUTION OF RESOURCE MAN-
AGEMENT

From our analysis we have seen that neither exposing de-
vices directly to the WWW nor using centralized systems
(Figure2a.) are appropriate structures for a World Wide
WoT. For these reasons, we propose a distributed resource
management architecture to create World Wide WoT whose
topology is Mesh like as shown in Figure2b. In this architec-
ture, there are stand-alone local WoT platform for each WoT
domain. This gives an aspect of local resource management
to each WoT. Then we create a network of those local WoT
platforms with an add-on middleware. This method decen-
tralizes the resource management and solves the problem of
total dependency.

To enable this concept, we propose the architecture that
creates World Wide WoT with two steps. The first step is
to manage local WoT environments with a stand-alone plat-
form, which is called uBox. The second step, we should in-
stall an add-on middleware to interconnect local WoT plat-
forms and create World Wide WoT, which we call uBoXing.
In this section, we will describe how this model contributes
to WoT environment.

3.1 Aspect of Local WoT Management
The uBox is nothing to do with World Wide WoT by it-

self. This platform is only for managing one domain of WoT
for internal use. Initially WoT are built to make a certain
environment smart, such as an office or a house, based on
special needs. uBox supports this feature of WoT. When
administrators register their networked sensors or actuators
to this platform, the users or developers within the network
can discover them and utilize them with a simple unified
interface. They can register their internal administrative in-
formation to the platform since uBox is totally under their
control and external user will not access the platform server
directly. This helps simple private application development.

Now, in WoT environment, many resources, which are ei-
ther sensor or actuator, are connected to the network and
can be manipulated through the network. However, each re-
source has own way of access. Application developers have
to read a document for each resource to know how to access

Entity

Class

Aspect

Data Access
Ex: /sensor/entity/sensor123

Data Discovery
Ex: /sensor/class/temperature

Data Processing
Ex: /sensor/aspect/light/average

sensor actuator

Figure 3: Layer Abstraction of WoT. Entity layer
provides direct node access. Class layer provides
node discovery. Aspect provides node discovery and
data processing of discovered nodes.

it. Even before reading documents, he has trouble finding
what are installed in the environment. If application devel-
opers have a private WoT platform that provides them a
simple unified interface to search, and access the resources
in their environment, their amount of task to create a WoT
application will be much reduced. In this way, WoT be-
comes a local infrastructure, and the application developers
can focus on application itself.

3.2 Network among Local WoTs
uBox can be interconnected each other(uBoXing) by add-

on middleware, which we call global gateway, although they
are stand-alone by themselves. Global gateway belongs to
the same network as local WoT platform but port is opened
for the Internet. This add-on has two functions, which are
1) to control external access to the sensors and actuators
that is managed by attached WoT platform, and 2) to route
the users’ request for appropriate local WoT platform placed
somewhere in the world.

As for the access control feature of global gateway, it ac-
cepts requests from external network and bridge the request
and response. In request bridging, accessibility to the node
is according to the information that comes from its local
WoT platform, which are open, close, authenticate. As for
the routing feature, it creates overlay network of global gate-
ways over the Internet with utilizing physical distance as a
metric. Then when it receives a request from user, the global
gateway will deliver the request to gateways that contains
their target data via the overlay network.

Using uBox and attaching global gateway as an add-on
middleware for uBoXing, we can create WWW WoT with
local WoT centric approach.

4. SYSTEM DESIGN
This platform is based on an layered abstraction as shown

in Figure3 and each layer can be manipulated via RESTful
interface. Users or applications can access each layer in-
dependently. They can also specify the target scope from
whether local or global. The URL format is http://[server]/
[local/global]/[sensor/actuator]/[layer]/[parameters]. Each
layer will be described as follows.

4.1 RESTful Access To Resources

4.1.1 Entity: Direct Access To A Resource

a) Registration (sensor)

POST : /local/sensor/entity/1.2.3.4.5

b) Update (sensor)

PUT : /local/sensor/entity/1.2.3.4.5

temp. 20 celsius

c) Manipulation (sensor)

GET : /local/sensor/entity/1.2.3.4.5

d) Manipulation (actuator)
PUT : /local/actuator/entity/abcd
/function/on

Local WoT Platform

Figure 4: Requests example for entity layer. Users
can register, update, manipulate and delete with
RESTful url.

POST:http://wot.teco.edu:8082/local/actuator/entity/light12345
{ "latitude":"49.00",
 "longitude":"8.38",
 "permission":"0",
 "description":"desk light of the room 203.",
 "tags":["room","desk"],
 "functions":{
 "on":{
 "url":"http://actuator.teco.edu:5001/power/000D6F00007294BB",
 "method_type":"GET", "actuator_type":"light","permission":"0",
 "description":"turn on the power",
 "parameters":{"time":{"default":"0", "description":"time delay."}}
 },"off":{...}
 }
}

Figure 5: JSON for registering an actuator.

The bottom layer of the WoT access abstraction is called
“Entity”, which enables direct access to the resources with
specifying their resource id. Entity layer supports registra-
tion, update, manipulation, and deletion of information of a
resource.

• Registration: To register the resources, a user should
create HTTP request via POST with parameters that
are formed as JSON to entity layer. Figure5 shows the
JSON request to register actuator that is for private
use, located to coordinates (49.00,8.38) and tagged by
“desk” and “room”. Tag is used for searching. The
key that sensor registration request does not have is
“function”, which defines how to actuate the resource.
In this case, the request defines functions named “on”
and “off”. In the function named “on”, they specify
resource uri, method type, necessary parameters, and
accessibility. The actuators are supposed to have also
RESTful support, either they have native RESTful
support or they have proxy which enables RESTful
access to the actuator. Resource registration is only
allowed locally.

• Update: To update resource information, you should
use PUT method with parameters that are also formed
as JSON. The parameters are the same format as the
registration, only with the information that you want
to update. As for sensors, sensor data are consider to
be attributes of sensor. Therefore, you make a PUT
request with sensor data into the url that is shown in
Figure4b to insert new sensor data. JSON format for
data insertion is shown in Figure6. Resource update
is also allowed only within internal network.

PUT:http://wot.teco.edu:8082/local/sensor/entity/1.2.3.4.5.124
{ "data":{
 "temperature":{
 "unit":"celsius",
 "value":"20"
 }
 }
}

Figure 6: JSON for updating sensor data.

• Manipulation: Resource manipulation means “ac-
quiring data” for sensors and “evoking a function” for
actuators. For sensors, users need to create GET re-
quest. The query format is shown in Figure4c. If op-
tional parameter “cache” is set false, the server waits
replying the response until next data comes. There-
fore, event driven application can be developed over
this platform. For actuators, the user need to create
PUT access with required function specific parameters.
PUT request such as shown in Figure4d will invoke the
function“on”, which is registered by the request shown
in Figure5. According to RESTful concept, we have
decided to use PUT method for invoking a function
since it changes a status of the resource or situation of
the environment. This feature can be applied to both
localy and globally.

• Deletion: To delete a resource, the user should make
a DELETE request to the url, which is the same url as
registration. This will delete device information, and
corresponding data as well. This request is only used
within the internal network.

4.1.2 Class: Discovering Resources
We named the second layer of abstraction “Class”. This

layer supports resource discovery. Users can discover the
sensors with specific type of data or actuators. For example
local/class/actuator/light will discover actuators that con-
trol the light in the local area. To collect temperature sen-
sors tagged as “outside” and located within 1000m radius
circle from coordinates(49.00, 8.38), the user should make
GET request to the url shown in Figure7a. This layer only
supports GET requests. Requesting for global resource in
this layer and Aspect layer, which is described next, will
follow the sequence diagram shown in Figure.8. First, 1)an
application sends the HTTP/GET request to a uBox in their
home. 2)the uBox requests for the IP addresses of uBox in
a target area to device discovery network. And 3) they the
uBox sends requests for the individual remote uBoxes to
collects target datas.

4.1.3 Aspect: Processing Resources
The top layer of the abstraction is named “Aspect”, since

this layer processes multiple data and generates data that
represents their aspect. For example users can create GET
request such as shown in Figure7b. This request will collect
temperature sensors tagged as “outside” and located within
1000m circle from coordinates(49.00, 8.38) and process av-
erage value for each unit. The procedure of your own can
be added to your uBox with posting JavaScript.

a) Class Access (Global) for Temp. data in the 1km area from location (49.00, 8.38), outside.

b) Aspect Access (Global) for Average Temp. data in the 1km area from location (49.00, 8.38), outside

b) GET: /global/sensor/aspect/actuator/temperature/average

?latitude=49.00&longitude=8.38&radius=1000&tags=outside

a) GET: /global/sensor/class/actuator/temperature?

latitude=49.00&longitude=8.38&radius=1000&tags=outside

Local WoT PlatformApplication

Figure 7: Requests example for class, and aspect
layer. Users can find and process global sensor data
with conditions.

Application uBox (A) Resource Discovery NW uBox (B) uBox (C)

(1) HTTP/GET (2) HTTP/GET

(3) HTTP/GET
(3) HTTP/GET

Figure 8: Sequence Diagram of Request Process
Procedure for the World Wide Request

4.2 Global Gateway
We call the add-on software Global Gateway. This gate-

way exchanges geographical location of uBox, and creates
overlay network on the Internet utilizing their physical dis-
tance as a metrics. Therefore, users can ask for the global
sensor data to his local gateway as well with global gateway.
If user requests for temperature data around his location, it
forwards the requests to its global gateway. Then global sen-
sor network gateway passes the requests to global gateway
that is within the target area or the closest WoT platform.
The local platforms pass the request forward for N times and
search the target sensors. With this way, users can request
sensor data in any part of the world with the same manner
with local requests.

5. SMART TECO ENVIRONMENT
SmartTecO is a WoT environment that is running in our

lab. The sensors and actuators that we utilize are shown
in Figure9. Figure9a is a device called “uPart”[13], which
is a tiny wireless sensor node with temperature, light, and
movement sensors implemented. Figure9b is “d-bridge”[14],
which is a programmable base-station for uPart. D-bridge
receives uPart packet and forward them to uBox via HTTP.
Those devices are made in TecO. Figure9c is a device called
“Plugwise”. This device senses power consumption, as well
as controls on/off state of the power plug via ZigBee. A
device in Figure9d is “FHT80b”. This is an actuator that
controls heater via wireless network. We placed a PC that
bridges commands to Plugwise and FHT80b from HTTP,
since they are commercially-supplied and both do not have
RESTful interface.

5.1 Management Web-Interface
We have created browser-based external user interface for

uBox. This interface creates variety of requests that are ex-

a) D-bridgeb) uPart

c) Plugwise d) FHT80b

Figure 9: Resources at SmartTecO. a)D-bridge,
b)uPart, c)Plugwise and d)FHT80b

Figure 10: Screen dump of uBox interface.

plained above with web interface with Ajax. Figure10 shows
the screen shot when a user checks the property of a sensor
node. The sensor static information with dynamic real-time
updating data plot is shown on the web browser. Also, the
user can control actuator as well through this interface. This
interface is independent from the core software. It only calls
the URLs that the platform offeres to normal users. There-
fore, this interface is also one of applications built on the
platform. Mainly this web interface is using Ajax technolo-
gies, such as a graphing library, a mapping component and
Ajax library. As this web interface, which is mash-up ex-
isting techniques, shows that our approach fits together well
to the other state-of-the-art technologies. This also confirms
that we enabled loose coupling between components with the
platform.

5.2 Smart Laboratory
The laboratory at TecO has traditionally been a living lab

for ubiquitous technology. Some smart applications have
become essential part of the infrastruction. One of those
applications was a smart alarming system for our hardware
lab. It would alarm the user and proactively turn of our
left-on soldering equipment when nobody was in the room.
The old wired hack was running for years until we moved
our lab equipment. While rewiring seemed too difficult, the

application seemed to a perfect first candidate to test our
World Wide Wot. We started with adapting the ClickScript
IDE (clickscript.ch) to support our dynamic discovery mech-
anisms and to use dynamically generated modules. By in-
cluding both uParts to detect movement around the table
and the plugwise devices to measure and control our sol-
dering irons, we can easily create the old application with
virtual instead of physical wiring.

Since the first prototype idea we have started (re-)building
many existing and new application of on top of WoT tech-
nology:

• The smart meeting room can inform anybody who is
standing in front of the closed door if there is really
a meeting happening. It also can automatically post
a 30minute reservation to our meeting room booking
system.

• The smart mailbox will email the user if (postal) mail
has been dropped in his mailbox on campus (otherwise
a 10min walk to check).

• The smart heating system can set all thermostats in
the room via the FHT80b based on the average of per-
sonal preference of all people in the room (Professor
overrides).

5.3 Mobile Sensor Applications
Mobile applications in World Wide WoT can interact with

arbitrary sensors around the device. For example, a user can
have a fine-grained weather forecasting service around him.
The application keep requesting for the data of rain sensor
within 1km area around the user’s location. Then, when
the application finds the raining spot within the area, he
will be notified and the map that shows current raining area
appears. By watching the map that is changing dynamically,
he will predict when it will start raining where he is now.

6. CONCLUSION AND FUTURE WORK
We proposed a distributed resource management archi-

tecture for interconnecting WoT with “local platform” and
“global gateway”. Local WoT platform enables ubiquitous
computing environment with a classical UbiComp approach,
which is interacting with its surroundings, rather than a
world wide services. However, global gateway as an add-on
middleware enables to interconnect the local WoT platforms
and creates a World Wide WoT, which enables for appli-
cations to interact with multiple WoT domains. This gives
applications on WoT mobility and proximity. This approach
creates World Wide WoT with leaving resource management
to local domain.

We build a first proof of concept prototype that allowed
us to build ubiquitous computing application in our lab on
top of Web-of-Things technology. Our future work is consid-
ering better methods to create the overlay networks of local
WoT platform. There are other promising works in that like
pubsubhubbub or telehash that integrate webtechnology and
P2P networks. Platforms like netkernel provide a powerful
tool for in-network processing. In the future we like to es-
tablish an open distributed communication framework based
on World Wide Web technology for building both local and
global WoT platforms.

Acknowledgement
This work was partially funded by the German Ministry of
Research and Education as part of the Aletheia project.

7. REFERENCES
[1] U. Saif and D.J. Greaves. Communication primitives

for ubiquitous systems or RPC considered harmful. In
Distributed Computing Systems Workshop, 2001
International Conference on, pages 240–245, 2001.

[2] C.K. Hess and R.H. Campbell. A context-aware data
management system for ubiquitous computing
applications. 2003.

[3] Jini. http://www.jini.org/.

[4] A. Krohn, M. Beigl, C. Decker, P. Robinson, and
T. Zimmer. ConCom: A Language and Protocol for
Communication of Context. Universität Karlsruhe,
Fakultät für Informatik, 2004.

[5] D. Guinard, V. Trifa, and E. Wilde. A resource
oriented architecture for the web of things. Proc. of
IoT, 2010.

[6] Arshan Poursohi Vipul Gupta, Poornaprajna Udupi.
Early lessons from building sensor.network: an open
data exchange for the web of things. In 8th IEEE
International Conference on Pervasive Computing and
Communications, PerCom 2010, 2010.

[7] Patcube. http://www.pachube.org.

[8] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao.
Senseweb: An infrastructure for shared sensing. IEEE
MultiMedia, 14(4):8–13, 2007.

[9] Mark Hansen Gong Chen, Nathan Yau and Deborah
Estrin. Sharing sensor network data. Technical report,
Center for Embedded Network Sensing, March 2007.

[10] R. Pike, D. Presotto, K. Thompson, H. Trickey, and
P. Winterbottom. The use of name spaces in plan 9.
In Proceedings of the 5th workshop on ACM SIGOPS
European workshop: Models and paradigms for
distributed systems structuring, pages 1–5, 1992.

[11] 2011 watchlist: 6 themes to track - O’Reilly radar.
http://radar.oreilly.com/2011/01/2011-watchlist.html.

[12] Frank Dabek Daniel Peng. Large-scale incremental
processing using distributed transactions and
notifications. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and
Implementation, 2010.

[13] M. Beigl, A. Krohn, T. Riedel, T. Zimmer, C. Decker,
and M. Isomura. The upart experience: building a
wireless sensor network. In Information Processing in
Sensor Networks, 2006. IPSN 2006. The Fifth
International Conference on, pages 366 –373, 2006.

[14] Dawud Gordon, Michael Beigl, Martin Alex, and
Er Neumann. dinam: A wireless sensor network
concept and platform for rapid development. In the
Seventh International Conference on Networked
Sensing Systems, INSS 2010, 2010.

