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ABSTRACT

During the vast trend of urbanization, mobile sensing in
metropolitan area has become an emerging fashion and
prevailing technology to monitor the environmental
changes and human activities in the city scale. In this paper,
we propose a novel framework, namely, the Context-Aware
Metropolitan Sensing (CAMS), to rise to the increasing
challenges in context acquisition, context fidelity, context
dynamics and context complexity. CAMS is an high level
framework that focus on knowledge discovery among
distributed or mobile users, and loose coupled with specific
communication and networking technology. By a case
study of Beijing road roughness evaluation, we propose
decision-tree based machine learning algorithm to gain
knowledge from 3-axis accelerometers and GPS receivers.
The results show how the CAMS framework can be used to
develop city-scale mobile sensing applications.
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1. INTRODUCTION

In the past few years, a new trend of urban or metropolitan
sensing and people-centric sensor network has become a
major driving force of ubiquitous computing and context-
aware applications. There have been many interesting
applications utilizing context, many of them belong to
Location Based Services (LBS).
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Sensor networks have been considered as a major enabling
technology for realizing interactions between human
perception and the physical world. We have seen oceans of
demo systems and applications, which revealed people’s
ingenuity and great advancements in many aspects of
sensor network technologies. Cuff concluded that
‘embedded networked sensing had successfully shifted
from the lab to the environment, and there would be an
unprecedented move to the metropolitan area, where
citizens will be the source of data collection’ [1].

Towards a better understanding of the urban life, many
research groups have been engaged in fine-grained
monitoring of environment and people’s activities. Center
for Embedded Networked Sensing at UCLA[2] focuses on
participatory urban sensing which emphasizes the
involvement of individuals and community in the process of
data collection and storage(e.g. PEIR[3]). MetroSense
project of Dartmouth College presents a series of
prototypes(e.g. BikeNet[4], CenceMe[5]) for people-centric
data gathering, mainly by mobile phones.

Metropolitan sensing utilizes heterogeneous and distributed
sensors to gain data about temperature, moisture, noise and
air pollution. Spatial-temporal information which can be
obtained from the GPS receiver is aligned to these
environmental information for augmented perception and
personal affair scheduling. However, great challenges still
remain when we try to discover knowledge from data in
metropolitan sensing systems. Henrichsen et al.[6] and
Poslad[7] conclude the challenges in general applications
respectively. In common, they use the concept context as
‘any information that can be used to characterize the
situation of an entity that is considered relevant to the
interaction between a user and an application’[8]. Context-
aware system is basically considered as system that can be
aware of, and adapt to its situation in its physical, technical,
and personal environments. Considering the specific
requirements of metropolitan sensing, we highlight the
following four challenges that need to be considered.

« Context Acquisition: In metropolitan sensing, sources of
the information are embedded in the city-scale geometrical
areas. The technical challenges for the infrastructure is how
to accomplish demanding data collection and transmission



tasks with extremely limited communication and
computation power in sensor networks.

« Context Fidelity: In a citywide distributed sensor system,
data may be incorrectly, incompletely, imprecisely defined,
determined or predicted. Moreover, delay is incurred in
exchanging dynamic context information and intermittent
connectivity can even cause part of the information
unknown.

e Context Dynamics: Most of the information in
metropolitan sensing applications may exhibit a range of
spatial-temporal characteristics. They are highly temporal
dynamical. And data collectors (e.g. vehicles, people) are
usually mobile or may vary across regions. Therefore, the
dynamics render difficulties in obtaining an accurate set of
the context information.

e Context Complexity: Information in metropolitan area
may be distributed and partitioned, composed of multiple
parts that are highly correlated. But the relationships may
be implicit. They may be related by derivative rules that
make a context dependent on another.

In this paper, we propose a primary framework for Context-
Aware Metropolitan Sensing (CAMS), from context
acquisition techniques to context utilization. The paper is
organized as follows. In section 2, we describe our
prototype and deployment of a taxicab-based metropolitan
network that perform mobile sensing in Beijing. In section
3 we describe in detail the framework of CAMS and its
components. In section 4 we show a case study of CAMS
in road roughness evaluation of Beijing. Section 5
concludes the paper.

2. METROPOLITAN SENSING DEPLOYMENT

To build a context-aware metropolitan sensing system, the
first question is how to collect and aggregate data in city
scale. Definitely this is a huge challenge when we want to
achieve this goal at relatively low cost and not so much
labor-intensive deployment. Since 2009, we focus on
building flexible and low-cost sensing infrastructure based
on public transportation systems (especially taxicabs) to
perform distributed sensing and operating tasks in an
autonomous manner.
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Figure 1. Beijing roads
redrawn by ten taxicabs’
traces

Figure 2. The city map of
Beijing

The favorable feature of taxi-based metropolitan sensor
network is that it can provide affordable and high density
sensor coverage for the urban area. We analyze the GPS

traces of over 28,000 taxis of Beijing , and find the mobility
of taxi reveals great potential of metropolitan sensing: taxis
can go anywhere at any time and perform sensing and
operating task independent from people’s manipulation.
What is more impressing is that with a large time
granularity, we can reconstruct the physical field of a city
by a quite small proportion of vehicles. Fig. 1 shows the
accumulative traces derived from 10 taxis in one day, and
we can recognize the portrait of the city road network when
contrast with a real city map (Fig. 2). We develop a
prototype(Fig. 3) and deploy it on a group of 20 taxicabs
and tour buses; each includes GPS receiver,
temperature/humidity sensor, carbon-monoxide(CQO) sensor
and 3-axis accelerometer.

Figure 3. Mobile Devices for Metropolitan Sensing

3. CAMS FRAMEWORK

We propose a comprehensive framework for Context-
Aware Metropolitan Sensing (CAMS). This framework is
distinct from others, e.g. the framework proposed by
Baldauf et al.[9], because it emphasizes on context sharing
within the context community. Here we define a context
community as a social network or community of users
where they can exchange context in common interest. In
metropolitan scenario, the capabilities of each user are quite
constrained by the low power devices and the inherent
limits of temporal and spatial surveillance range.
Participatory context sharing will greatly enhance each
individual’s priori knowledge and situation awareness. Fig.
4 illustrates the overall aspects of CAMS framework. The
framework can be divided into three stages.

Context Context Context
Acquisition

Management Utilization

Reposte
(Actuation)

Figure 4. CAMS Framework
* STAGE I: Context Acquisition



Context acquisition acts as an enabling technology of the
whole system, which includes local context acquisition and
context sharing mechanism.

- Local context acquisition: acquire data from sensors
which are embedded in the portable devices or
professional equipment. This process may entail many
sub-processes such as sensor calibration and sensor
configuration (e.g. to set the sample rate or trigger
threshold of events).

- Context sharing: in metropolitan sensing applications,
the context of each user is quite limited in both
temporal and spatial range. To achieve a global view of
the urban area, users have to share information with
others. Participatory context sharing will greatly
enhance each individual’s priori knowledge and
situation awareness. Basically, context sharing
mechanism is constrained by network availability
(either infrastructure-based, such as GPRS/3G, or
short-range wireless communication technologies, such
as Zigbee, WiFi, etc.) and community sharing
policy(the social network).

* STAGE II: Context management

Context management includes sub-stages of filtering,
composition and storage.

- Context Filtering: data may be incorrectly,
incompletely, imprecisely defined, determined or
predicted. Filters only consider events within a certain
range that adhere to context fidelity polices, which
define the temporal granularity (duration and/or
interval) and spatial granularity (absolute location or
relative location) and accuracy. A major task of context
filters is to deal with inconsistency in raw context from
both local and remote users.

- Context Composition: multiple contexts are always
linked and interrelated. Context composition will play
a key role in converting low-level contexts (such as
location, time and identities) into higher-level contexts
(such as where and when a party is held). Combining
several individual contextual values may generate a
more precise understanding of the current situation
than taking into account any individual context.

- Context Storage: includes both historical contexts and
remote contexts, and these contexts are organized to
support fast query-based retrieval. Life-cycle of context
is important to maintain useful context and eliminate
out-of-date ones.

* STAGE I11: Context Utilization

Context utilization focuses on context discovery and
adaptation.

- Context Discovery: reveals the application goal and
efforts to search and retrieve related current contexts to
perform further processing. Discovery of context may
require search algorithms to locate particular matches

in a very large context dataset. Context matching may
also need to use complex (sematic) metadata models
that are able to undertake matches in heterogeneous
context spaces.

- Context Adaptation: performs the task of transition
from the current context to the goal context. We may
be satisfied when we see so many contexts about urban
life created and retrieved, but it is really the relation of
the current context to a goal context that is the essence
of context-awareness. Machine learning algorithms
will play key role in the knowledge discovery process.

4. CASE STUDY: ROAD ROUGHNESS EVALUATION IN
BEIJING

4.1 Overview of Road Evaluation
Techniques

Road roughness is a broad term that incorporates everything
from potholes and cracks to the random deviations that
exist in a profile. Detection of the road condition is
important for safety and economic savings. To build a
roughness index, existing methods of gauging the
roughness are based either on visual inspections or using
instrumented vehicles that take professional measurements.
Nowadays, many smart phones, such as iPhone, are
equipped with accelerometers and gyroscopes, and there are
also built-in accelerometers in cars to improve suspension
performance and increase ride comfort.

Roughness

Gonzalez[10] proposes a method using acceleration
measurements and Fourier analysis to calculate the Power
Spectral Density (PSD) function of the surface. According
to 1SO 8608, It classifies the profile into ‘A’ (very good),
‘B’ (good), ‘C’ (average), ‘D’ (poor) and ‘E’ (very poor)
roughness indices. Liu et al.[11] presents an application
procedure based on wavelet theory to offer supplementary
information to a roughness index and provide additional
information on the characteristics of the roughness profile
of interests. Khoudeir et al.[12] suggests a method to
characterize micro-roughness of road surfaces through
image analysis.

However, most of the methods using acceleration
measurements cannot deal with the dynamic change of
urban road profile. Real-time and distributed data are
desirable to generate a global view of city roads status.
Utilizing CAMS framework, we propose a new road
roughness evaluation method, based on participatory urban
sensing.

4.2 Experiment Setup
To monitor and annotate road roughness conditions, we
adopt the following types of sensors in our experiment:

- Accelerometers: collect the acceleration in three
dimensions, while X-axis value reveals the accelerating
or braking status, Y-axis value reveals the turn-left or
turn-right actions, Z-axis reveals the vertical vibrations.
In our experiments, we adopt a commercial device with



max sample rate at 200Hz, accuracy at 10°g (g is
gravitational acceleration).

- GPS receivers: commercial GPS module is used to
obtain the absolute location, satellite time and instant
speed.

- PC cameras: a big challenge in machine-learning of
road roughness is the lacking of ground truth, i.e. how
to examine a pothole derived from data analysis is
really existed. We take human-in-the-loop judgments.
PC camera is used to record the video of roads forward
for off-line comparison. By synchronizing the video
and the acceleration sensors, we could match the
acceleration data with the road surface it represents.

4.3 Primary Results

Fig.5 is a sample waveform of the acceleration
information when the car crossed a speed bump. We can
see clearly from the figure that there is an obvious up-and-
down in the Z-axis, with jitters in X- and Y- axis. Thus, the
fluctuation in peak-peak value will be helpful index to
identify the road surface condition.
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Figure 5. Sample Acceleration Waveform

Figure 6. Detected Road Surface Anomaly

4.4 Decision tree based machine learning method

To achieve Boolean classification for the normal and
abnormal conditions in road surface detection, decision tree
based method is a reasonable choice, especially when the
construction of decision tree does not require any domain
knowledge or parameter settings. Algorithms like 1D3,
C4.5 and CART adopt non-backtracking approach in which
decision trees are constructed in a top-down recursive
divide and conquer manner. In our case, at least four
attributes should be considered: x-acc, y-acc, z-acc and
speed. From the training dataset, we could derive
correlations between the variables and road condition index
(good or poor).

The algorithm to generate decision tree can be described as
follows[13]:

Input:

- D: training dataset;

- Attribute_list: x-acc, y-acc, z-acc and speed

- Attribute_seclection_criterion: a  procedure to
determine the ‘best’ decision attribute

Output:

- The decision tree for road roughness evaluation
Methods:

(1) A < Attribute_seclection_criterion(D, Attribute_list)

(2) Assign A as decision attribute for node

(3) For each value of A, create new descendant of node

(4) Sort training examples to leaf node

(5) IF training examples perfectly classified, THEN STOP,
ELSE iterate over new leaf nodes.

Here the procedure Attribute_seclection_criterion is critical
for algorithm performance. We adopt information gain[14]
as metric of the impact of attributes for learning.
Information gain of attribute A can be denoted as

Gain(A) = Info(D) - Info,(D),

Function Info() is defined as entropy in Shannon
information theory. And Infos(D) is the expected
information required to classify a tuple from D based on the
partitioning by A.

According to the above method, we can gain a decision tree
that can reasonably perform the classification task. See

Figure 7.
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Figure 7. Decision Tree for road roughness detection

speed > 1 5kan |_\'-acc | =02 | y-ace | =<02g

4.5 Result Annotation

Through the above processes we have gained a high-level
context (i.e. knowledge) about the road roughness condition.
We annotate this context on Google Map: Fig. 8 shows
results from a single trace from road test in Haidian District
of Beijing on April 15, 2011. The blue lines represent the
vehicle traces and the red circles pinpoint poor road surface.
Fig. 9 shows results from 10 vehicles on April 27, 2011,
that predict the possible locations with poor road surface in
Beijing downtown.



Figure 8. Single Trace Result Annotation
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Figure 9. Multiple Traces Result Annotation

5. CONCLUSION

In this paper, we propose CAMS as a general framework to
develop context-aware applications in participatory urban
sensing. The ultimate goal of CAMS is to better understand
and deal with the challenges in context acquisition, fidelity,
dynamics and complexity. At the first time use CAMS in
the road roughness case study in Beijing. We propose
decision-tree based algorithm to classify normal and
anomaly road surface conditions.

In further study, practical applications and engineering
efforts are the driving forces of mobile sensing system
research. The prevalence of sensor-embedded smartphone
will greatly extend the special and temporal range of data
acquisition. Also, other machine learning methods can be
developed as building blocks of CAMS framework. More
comprehensive phenomenon will be discovered, such as
traffic jam pattern recognition, dynamics of urban

temperature/humidity, and the correlation between air
pollution and energy consumption, and so on. All of these
applications are revealing great potential on mobile
metropolitan sensing.
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