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ABSTRACT
Human Activity Recognition (HAR) with body-worn sensors
has been studied intensively in the past decade. Existing ap-
proaches typically rely on data from inertial sensors. This
paper explores the potential of using point cloud data gathered
from wearable depth cameras for on-body activity recogni-
tion. We discuss effects of different granularity in the depth
information and compare their performance to inertial sensor
based HAR. We evaluated our approach with a total of six-
teen participants performing nine distinct activity classes in
three home environments. 10-fold cross-validation results of
KNN and Random Forests classification exhibit a significant
increase in F-score from inertial data to depth information (by
> 12 percentage points) and show a further improvement when
combining low-resolution depth matrices and sensor data. We
discuss the performance of the different sensor types for dif-
ferent contexts and show that overall, depth sensors prove to
be suitable for HAR.
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INTRODUCTION & RELATED WORK
Human activity recognition (HAR) in home environments has
been widely explored in recent years. Prominent applications
include health care and assisted living for the elderly, home
automation and energy saving [8, 9]. Inertial sensors in smart-
phones or attached to different parts of the body have been
widely used for HAR [2]. Filippoupolitis et al., for instance,
achieved promising results relying only on accelerometer data
from smartwatches [7]. Other related work considers, i.e., the
varying location of a smartphone on the body [5] or postural
transitions [15]. They struggle, however, with activities of
similar postures and movement patterns and good results are
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often achieved only for a small number of high-level activi-
ties. This work addresses these limitations by proposing HAR
using body-worn depth cameras.

Initially, activity recognition with cameras has been performed
with classic computer vision approaches involving image pro-
cessing, object detection, and recognition algorithms [11].
More recently, low-cost structured light depth sensors such
as the Microsoft Kinect enabled research based on 3D point
cloud data. These approaches commonly use 3rd-person video,
limited to a fixed viewpoint [4] and location. Other projects
used depth cameras mounted on mobile robots following the
user [10]. Egocentric video captured from cameras mounted
directly on the user’s head or body observes the scene from a
1st-person viewpoint. Cho et al. embedded an image sensor
and an accelerometer into a belt buckle to detect the direction
of movement, such as Walking Forward or Turning based in
optical flow and acceleration data [6]. Pirsiavash and Ramanan
recognize detailed Activities of Daily Living using a chest-
mounted video camera [12]. With similar hardware, Castro
et al. were able to recognize 19 specific activities using a
Convolutional Neural Network [3]. Rather than image data,
we propose the use of depth information which – to the best
of our knowledge – is a novel approach that does not rely on
computationally intensive object recognition and is suitable
for real-time application.

SYSTEM DESIGN
For our study, we employ the Google Project Tango platform
(Lenovo Phab 2 Pro, see Figure 1) which offers both a depth
sensor and inertial sensors in the portable form factor of a
smartphone. It has gained popularity in recent years [1] and
has been shown to exhibit an average error similar to popular
desktop sensors [13].

Figure 1. We used a body-worn Tango system to investigate Human Ac-
tivity Recognition (HAR) using the depth information from the camera.
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Recording and Labeling
The built-in wide-angle and time-of-flight depth cameras to-
gether with its inertial measurement unit enable the device to
calculate relevant features about the environment (area learn-
ing), localize itself within it (motion tracking) and generate
3D point clouds of it (depth perception). The device allows
flexible programming and is portable and small enough to
be carried on-body. These factors made it a convenient plat-
form for this study. We developed an Android application that
simultaneously records point cloud data and inertial sensor
data on the same device. Ground truth labels can be assigned
within the application before recording. To minimize distrac-
tion while collecting data, we developed a remote control
application running on a second smartphone which can be
used to assign labels as well as start and stop recordings.

Segmentation
The recorded data was then preprocessed by applying segmen-
tation with a segment size of 1 second on both sensor and depth
data. This segment size was found to be useful for sensor data
[7]. Furthermore, the Tango API provides 1-3 point clouds per
second, depending on the number of points identified in the
scene. We only consider the first point cloud in each segment,
since merging or averaging all point clouds per segment only
increased processing time without improving the results. Sim-
ilarly, expensive filtering and outlier removal algorithms did
not impact the performance and were not applied in this study.

Temporal and Visual Feature Extraction
For each of the segments, we extracted mean and standard
deviation as basic temporal features for all base and composite
sensors listed in Table 1.

Our first set of visual features comprises four Depth His-
tograms with equal bin width (eql), as well as square (sqr),
cubic (cub) and exponentially (exp) scaled bins. The non-
linear binning strategies aim to emphasize the area closer to
the device. The reason is that activities are often most clearly
distinguishable by the objects that the user is holding or inter-
acting with. Bins are defined by break points that separate bins
from one another. Let n be the number of bins, i ∈ [1,2, ...,n]
the break point indices, d the maximum distance and a the
exponential growth factor, we calculate the break points ac-
cording to the functions eqli = i×d

n , sqri =
i2×d

n2 , cubi =
i3×d

n3

and expi =

{
0, if i = 0
ai×d

an , otherwise.

Secondly, we generate a Depth Matrix by splitting each point
cloud into a 3×3 and 4×4 grid of equal sized cells. First
we calculate the angles that the viewing direction forms with

Sensor Type Dimensions

Accelerometer Base 3
Gyroscope Base 3
Linear Acceleration Composite 3
Gravity Composite 3

Table 1. Sensor data recorded by our application. The Android API
provides data taken from individual physical sensors (Base Sensors) as
well as values derived from multiple sensors (Composite Sensors).

Figure 2. Visualization of a 3×3 grid applied to a sample point cloud of
the kitchen counter (left) with the corresponding depth matrix (right).
Each cell of the depth matrix contains the mean distance of all points in
the corresponding orange or blue segment.
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Figure 3. Floor plan of the smart home facility. Numbers 1–7 indicate
the location of each activity listed in Table 2.

the directional vector from camera origin to each point: α =
atan( zi

xi
)− atan(1) and β = atan( zi

yi
)− atan(1). Based on

these two angles, we can assign each point to a row and column
of the matrix. Finally, we use the mean distance of points in
each cell as features (see Figure 2). We used this approach
since similar distance-based features for the entire point cloud
did not provide enough distinction between activities.

Sliding Window
The visual features above characterize one individual point
cloud. To capture dynamic changes over time, we applied
a 10-second sliding window in increments of 1 sample. To
keep the approach suitable for real-time application, we only
consider past data. As a standard measure for the similarity of
histograms, we used chi-square distance between consecutive
samples and calculated mean and standard deviation for the
10-second window. For depth matrices, we derived the same
measures directly from the mean distances of each cell.

EVALUATION
To evaluate our approach, we collected a set of labeled train-
ing data in a smart home facility operated by the Ubiquitous
Computing Systems Laboratory at Nara Institute of Science
and Technology [16] and in two private homes (see Figure 3).
Each activity was carried out three times for one minute by
16 participants (1 female), aged 23 to 32 years (µ = 27.5,
σ = 3.4), with an average body height of 1.78 m (σ = 0.1).
This provided us with a balanced dataset of 7.2 hours. We
chose nine activities, as listed in Table 2 with their respective
location in the smart home. The Tango device was strapped
to the participant’s chest keeping location and angle consis-
tent without restricting natural movement of the arms. It was



Label Activity Location

1 PC Working on a laptop 1
2 TV Watching TV on the couch 2
3 Book Reading a book or magazine 2
4 Phone Operating a smartphone 2
5 Cleaning Vacuuming the living room 3
6 Sleeping Lying in bed on the back 4
7 Cooking Preparing eggs in a pan 5
8 Eating Eating the eggs with a fork 6
9 Dishes Washing the dishes 7

Table 2. Overview of recorded activities and their respective location in
the apartment (see floor plan in Figure 3).

Features Leave-
Recording-
Out

Leave-
Subject-
Out

Leave-
Environment-
Out

Inertial Sensors (38 features) 78.2% 50.8% 47.4%

Cubic Histogram (64 bins) 94.6% 74.8% 55.2%
VFH Histogram (31 bins) 87.6% 71.4% 51.2%
ESF Histogram (40 bins) 78.4% 61.3% 28.5%
Depth Matrix (4×4) 93.1% 74.0% 60.6%

Sensors & Histogram 96.5% 76.4% 63.8%
Sensors & Matrix 93.9% 78.0% 69.4%

All (Sensors, Histograms & Matrix) 95.9% 75.8% 66.8%

Table 3. F-Score of Random Forest classifiers: cross-validation using dy-
namic features calculated over a 10s sliding window. The results of the
K-Nearest Neighbors (KNN) approach showed similar relative improve-
ments and slightly lower absolute scores. Among the four histogram
binning strategies, the cubic histogram was the most successful.

mounted in portrait orientation to maximize the vertical field
of view since capturing both the user’s interaction with objects
in the lower part of the frame and the structure of the back-
ground in the upper region provided significantly better results.
The data was stored with preassigned labels and recordings
were started and stopped remotely.

Results
We trained a series of K-Nearest Neighbors (KNN) and Ran-
dom Forest (RF) classifiers on the feature sets described above.
As RF shows overall better performance than KNN, only RF
values are presented here. Distance-based classification is
common for histogram data, and we expected a tree-based
classifier to separate activities based on specific depth inter-
vals especially in depth matrices. We evaluated the classifiers
with 10-fold cross-validation on participants (Leave-Subject-
Out) and recordings (Leave-Recording-Out), and with 3-fold
cross-validation for the three sites (Leave-Environment-Out).
Table 3 shows the results of RF classification. Depth his-
tograms and depth matrices provide discriminative features for
the tested 9 activities. Across all three cases, the use of depth
information increased the F-score by at least 12 p.p. (percent-
age points) compared to inertial sensors. The cross-validation
also shows lower variance when using depth data.

Finally we compared these results to Viewpoint Feature His-
tograms (VFH) and Ensemble of Shape Functions (ESF), two
histogram-based global point cloud descriptors implemented
in the Point Cloud Library [14]. The two descriptors were cho-
sen as they are fast enough for real-time application. However,
both showed a performance lower than our proposed simple
features with an F-score of up to 87.6% for VFH.

Cleaning 69.5 5.2 12.2 2.3 0.0 0.0 0.0 0.0 0.3
Cooking 12.5 65.2 13.8 19.6 0.8 <0.1 2.3 <0.1 7.8
Dishes 16.5 11.4 70.3 6.0 0.2 0.0 0.2 <0.1 0.8
Eating 1.3 8.0 3.1 53.5 6.3 0.0 2.9 0.2 11.9
Book <0.1 1.6 0.1 3.3 71.5 0.0 18.0 2.9 1.2
Sleeping 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Phone <0.1 2.3 <0.1 2.6 17.0 0.0 68.4 1.9 7.9
TV 0.0 <0.1 0.0 0.0 3.3 0.0 2.1 94.4 2.0
PC 0.1 6.3 0.4 12.7 0.9 0.0 6.1 0.6 68.0
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Cleaning 96.5 0.1 0.0 0.0 0.3 <0.1 0.0 1.4 0.0
Cooking <0.1 95.3 3.5 1.1 0.4 0.0 0.2 <0.1 1.2
Dishes 0.0 4.1 95.2 0.3 0.9 0.0 0.3 0.0 0.5
Eating 0.0 0.3 0.7 91.8 2.8 0.0 0.8 0.0 6.0
Book 0.0 <0.1 0.3 2.1 82.3 0.0 4.9 0.0 13.4
Sleeping <0.1 0.0 0.0 0.0 0.0 100 0.0 <0.1 0.0
Phone 0.0 <0.1 0.0 1.1 3.5 0.0 91.6 0.0 2.4
TV 3.4 <0.1 0.0 0.0 0.0 0.0 0.0 98.5 0.0
PC 0.0 <0.1 0.3 3.6 9.7 0.0 2.2 0.0 76.4

Figure 4. Confusion matrices (Random Forests, Leave-Recording-Out)
for inertial sensors (top) respectively for 4×4 depth matrix (bottom).
Highest inertial sensor misclassification occurred between Book and
Phone, and Cleaning, Cooking and Dishes which represent similar pos-
ture and movement. When using the depth matrix, classification error
was significantly reduced.

Leave-Recording-Out
When the subjects are known, the system exhibits an F-score
of up to 94% using only depth data. The results of four 64-
bin histograms, on the one hand, show that emphasizing the
area near the body to a certain degree is beneficial with the
cubic strategy showing the best results. The equal-width his-
togram (F-score 91.2%) neglects small differences near the
body while the exponential histogram (F-score 87.8%) lacks
detail in greater distance, both leading to a lower F-score.
Depth matrices, on the other hand, exhibit similarly high F-
scores of >90% relying solely on nine or sixteen mean depth
features. Dynamic features improved the performance slightly.
However, using static features alone would allow the sensor
to operate at a much lower sampling rate compared to inertial
sensors. The confusion matrices in Figure 4 show that depth
data is superior particularly in separating activities with similar
posture (Phone and Book) and similar movement (Cleaning,
Cooking and Dishes).

Leave-Subject-Out
When testing with unknown subjects, depth data shows a sig-
nificant advantage over inertial sensors. A 4×4 depth matrix
outperforms interial sensor data based classifiers by 23p.p.
with an F-score of 74% (see Table 3). We can argue, that
posture and body movement are unique to each subject. Thus
information about the test subject is required when training a
classifier on inertial sensor data. The environment, however,
remains the same for all subjects, allowing our approach to
succeed.

Leave-Environment-Out
When environment and subjects are unknown to the system,
absolute F-scores are lower, but depth data still scores 13 p.p.
higher than inertial sensors. While the smart home facility
was a western-style home, other apartments were equipped
with Japanese-style furniture. Therefore, the activities TV,
Reading, Eating, Phone and Book took place sitting on the
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Figure 5. Per-class accuracy of leave-environment-out cross-validation.

Tatami floor with a very different point-of-view and posture.
The results show that our approach is more robust against sig-
nificant differences in the environment. Figure 5 compares the
per-class F-scores. A 4×4 depth matrix reduced misclassifica-
tion most notably among the stationary activities PC, Phone
and TV and for the dynamic activity Cleaning. The latter was
frequently confused with the other dynamic activities Cooking
and Dishes. The major advantage of our approach is its ability
to distinguish activities based on size and distance of objects
the user is holding rather than posture and movement alone. Fi-
nally, a combination of depth matrices and inertial sensor data
further improves the scores of dynamic activities by taking
subtle differences in movement patterns into account.

Discussion
Our results clearly show the potential of wearable depth cam-
eras for HAR. The Tango device allowed us to gain these
initial insights without needing specialized hardware. Due to
its size and weight, however, it is not comfortable enough to be
worn over long periods of time. Furthermore, the device was
designed for performance rather than energy efficiency which
makes it unsuitable for continuous operation. Ultimately, we
envision a compact, light-weight and unobtrusive depth sensor
with a low resolution (e.g., 4×4 pixels) and frame rate (e.g., 1
min). We believe such a sensor in the shape of a brooch or shirt
button could perform at a similar accuracy as the presented
results while consuming significantly less energy.

CONCLUSION AND FUTURE WORK
In this paper, we have shown that a wearable depth camera
can be used for human activity recognition. Our proposed
approach requires only one single depth sensor which could
operate at low sampling rates. With depth matrices, we were
able to achieve >90% accuracy with a total of only nine fea-
tures, which means that a low-resolution sensor in a compact
form-factor would be sufficient. In a direct comparison, our
approach outperformed inertial sensors and established point
cloud descriptors for activities with similar posture and move-
ment and showed lower variance overall. The simplicity of the
proposed features makes our approach suitable for real-time
and on-device feature extraction. Furthermore, our approach
exhibited satisfying results even for unknown subjects and
diverse environments showing a clear advantage over inertial
sensors. Future work will include a long-term study in un-
controlled environments across several homes. We will also
address the use of alternative depth sensors, their placement
on the body, and their energy efficiency.
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