
Experiences and Failures from Two
Decades in Embedded System Design

Micheal Beigl
Karlsruhe Institute of Technology
TECO / Pervasive Computing
Karlsruhe, Germany
michael@teco.edu

Matthias Berning
Karlsruhe Institute of Technology
TECO / Pervasive Computing
Karlsruhe, Germany
berning@teco.edu

Matthias Budde
Karlsruhe Institute of Technology
TECO / Pervasive Computing
Karlsruhe, Germany
budde@teco.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
UbiComp/ISWC’17 Adjunct , September 11–15, 2017, Maui, HI, USA
ACM 978-1-4503-5190-4/17/09.
https://doi.org/10.1145/3123024.3124393

Abstract
Embedded hardware platforms that carry sensors and actu-
ators play a major role in many Ubicomp applications. With
the advent of DIY platforms as Arduino, hardware develop-
ment for embedded systems is in the reach of everybody
today. These projects often build on low-fidelity systems
or even prototypes and are often carried out by engineers
with no strong background in electrical engineering. On
the other end of the spectrum lie specialized or highly inte-
grated platforms with much higher complexity. This paper
summarizes some of the pitfalls one may encounter in both
kinds of such multi-disciplinary projects and presents some
general lessons that can be drawn from past experience.
Lastly, we discuss the tradeoffs that come with different
levels of fidelity and how user and environment may (and
should) affect design decisions.

Author Keywords
Failure and Errors; Systems Design; Embedded Systems;
Hardware; Prototyping; Fidelity

ACM Classification Keywords
B.m [Hardware]: Miscellaneous

https://doi.org/10.1145/3123024.3124393


Introduction
Projects that include hardware development are generally
different from those projects that focus on software only.
The physicality of the hardware makes it much slower to
add, change or remove functionality in the system com-
pared to software. In Ubicomp systems, things tend to be-
come even more complex, as these systems are usually
tightly connected to their deployment environment. In ad-
dition to the physical context, this also includes the users,
as well as their interactions and social relationships. Usu-
ally these systems include a power supply, some form of
(wireless) communication, as well as sensors and actua-
tors to interface with the environment. Each of these has its
pitfalls, as we describe later.

Figure 1: The LOBSTER (top), a
modular, rotatable office space
equipped with a variety of
actuators e.g. to control heating
and cooling, as well as sensors like
the jNode-Env (below).

Hardware components are often well characterized and
described down to their internal detail. Tools for various
specific tasks in the process of developing hardware – from
simulation, emulation, to design and testing – are available
and comparable in function and use between vendors. This
enables engineers to focus more on the solution of the task
than dealing with possible incompatibilities of the system.
In this respect, hardware design and development seems
to be much less error prone than software. Still, hardware
design is also more challenging, simply because it is bound
to interaction with physicality – which can change drasti-
cally during the lifetime of a system. On the other hand, a
software system uses standardized interfaces to the world,
which dramatically reduces possible problems and errors.

One established method to deal with complex systems is
iterative development with small steps and interleaved test-
ing. One of the more prominent examples of this approach
is User Centered Design (UCD), which incorporates the
user as early as possible in the process [7]. The key com-
ponent are prototypes that can demonstrate important fea-

tures for testing, based on the current state of development.
Usually, their complexity and scope increases from low-
fidelity mockups, to high-fidelity systems that are almost
fully functional [4].

Nowadays, agile software development is already char-
acterized by small iterations, short sprints and countless
“code-compile-test” cycles. In hardware projects, this is only
possible for small systems on the breadboard level, early in
the development process. Luckily, Arduino and co. provide
an easy entry and hardware is getting cheaper, but scaling
up still requires significant investment in testing equipment,
time and especially components for each instance in each
iteration. In general, this increases the pressure to integrate
more changes in each step and subsequently, prolongs
the duration of the cycles. In addition, early stage hard-
ware prototypes are not robust enough, are not optimized
for power consumption or lack sufficient integration for real
world deployment and testing.

This paper reports selected errors made and some pitfalls
of such projects in the Ubicomp domain, which we expe-
rienced in the past in an anecdotal way. Subsequently,
we pick up on these examples to discuss tradeoffs that
come with different levels of fidelity and deployment envi-
ronments.

1) Unnoticed change in power supply
In the LOBSTER project [6], we equipped a novel type of
building (see Figure 1) for human comfort studies with a
high number of high-precision sensors. Sensors are in-
tegrated into walls, floor and ceiling and also worn on the
body of the inhabitants to measure a variety of environmen-
tal conditions and how the inhabitants perceive them. The
system was based on the jNode sensor node [5], which
was initially developed for battery powered operation. After



being tested successfully in our lab, we installed them in
the building. While in the lab the data was of high quality,
in the building we got erroneous sensor readings and sys-
tem crashes. What had happened? As the conditions were
(almost) the same this was very odd. In the end we found
that one minimal factor had changed: The USB power sup-
ply. In contrast to our lab supply, it exhibited a small noise in
the voltage that lead to the described effects. The external
supply was added for stationary sensors to lower the main-
tenance effort for the researchers. In the end, it made their
experiments harder until we could fix the bug.

Take away message: Even minor changes in the electrical
operating conditions can influence the performance drasti-
cally.

2) Change in environmental conditions
In another project we had designed and developed a new
family of low power wireless sensor system. The system
had been tested in the lab and some outdoor conditions
with very good measurement and transmission rates. In
the field, the performance of the wireless data transmission
of was not convincing. As the complete system, including
power supply, had been tested beforehand, an explanation
was difficult. It could have been the case that the transmis-
sion characteristics were rougher than in previous tests.
But this could not explain the full effect and we searched
for alternative explanations. In the end we found the deci-
sive reason: The oscillator which determined the frequency
for wireless communication varied too much because the
spread of operating temperatures was higher than in the
test settings.

Take away message: Any change in any physical condition
can influence any piece of hardware in an unexpected way.
Due to the complex interplay, testing is the only way to find

such problems.

3) Uncertainty reduction causes uncertainty
In time and resource constrained hardware projects, the en-
gineer tries to reduce the overall uncertainty of the system.
This is especially important in the early phase, because
changes in the design are getting more and more costly
with increasing runtime of the project and especially with
maturity of the system. In addition, the requirements from
customers and partners are a moving target. One often-
used way to mitigate this challenge is to modularize the
system, so that later changes will only influence a single
module, but not the whole system. Using hardware mod-
ules we were able to lower the uncertainty we had for the
overall system design in several projects. We were able to
proceed working despite of changes in parts of the sys-
tem later on. Generally, this also facilitates testing of early
prototypes, because of a low entry barrier and replaceable
parts in the field. The approach comes at a price. First,
it adds overhead on development time and thus cost, but
this might be acceptable due to later savings. Second, the
system is usually not so well integrated and larger than nec-
essary. And third, the modules need to be connected. Any
wire and connector is a primary source of error and issues,
especially during longer operation time. Partially, this also
holds for soldered wires which can break under mechanical
stress. One of our designs was deployed on heavy machin-
ery with a lot of vibration. This lead to several failures in
early prototypes, resulting in several unnecessary iterations.
Ultimately, the project was prolonged because of the modu-
larization.

Take away message: Consider if the method to reduce un-
certainty is really having the expected effect.



4) Lack of experience in specific detail
Hardware systems usually require embedding the electron-
ics in housings. Those housings are specific for an appli-
cation case. In one of our projects, a partner that was quite
experienced with the application domain, designed such a
housing for a rough outside use. In this case, an IEC IP69k
housing was selected that can survive dust, submersion
and even close-range high-pressure water. After deploy-
ment more and more of the devices failed, all of them due
to moisture induced short circuits. Still, the housing itself
was water-proof. What had happened? The device was not
only exposed to outside water, it was also exposed to ex-
treme temperature changes, which we did not test. These
temperature changes lead to changes in the internal air
pressure. Because the housing was not air-proof (which
is very difficult to implement), water vapors enters slowly.
With sudden temperature change from high to low, it can-
not escape and condenses on the inside of the housing and
creates unintended connections in the electronics.

Figure 2: The Mediacup, an early
IoT device with sensors to detect
movement, temperature and liquid
level of the cup [1]. The picture
shows the final version from 1999
with wireless recharging.

Figure 3: The Envboard, a
polished external design which
limited the internal sensors. (Image
taken from [3]).

Take away message: Try to get as much input from as
many experts as possible, not to overlook some important
detail. One expert might not be enough.

5) Long term user behavior may lead to
fundamental changes in system design
One of the first everyday objects where we integrated elec-
tronics was the MediaCup in 1998 [1] (see Figure 2). It was
a research prototype to carry out living lab studies and col-
lect experience regarding technology and application po-
tential of computation in everyday objects. The design was
guided by user interviews and some initial studies to re-
trieve general requirements. The cup was able to collect
data about the frequency of coffee intake, temperature of
the liquid and, location of the cup. The applications were
the warning of too hot coffee, drinking behavior statistics,

but also meeting room scheduling – due to the correlation
between cup movements and meeting room occupation.
The first version of the cup contained movement sensors,
a weight and a temperature sensor, a wireless communi-
cation module and a battery. In our study everything went
fine – for the first three months. Then, more and more cups
dropped out.

What had happened? After three months, the batteries
were empty. Despite the fact that every user found it a nice
gadget, nobody wanted to take the burden to change bat-
teries – although it was quite simple to do. With the second
version we addressed this topic by revising the design and
implementing a wireless recharging unit and infrastructure
in the lab to ensure continuous operation. The runtime on a
single charge was much shorter, but recharging was much
easier. Still, this redesign took the most effort in the overall
system implementation.

Take away message: Long term effects may influence ma-
jor design decisions.

6) Unclear requirements should be approached
cautiously
In the Envboard project [2] we were confronted with a rather
vague description of requirements, along with the use case
of mobile environmental monitoring. Despite of our recom-
mendation for an iterative approach we were expected to
deliver a high-fidelity product-like platform. This started with
the challenge of integrating the electronics and sensors into
already finished and fixed housing design (see Figure 3).
This included aspects that did not make a lot of sense, as
e.g. the solar cells in the surface. While they were too small
to make a contribution to the energy budget, they signifi-
cantly prolonged the manufacturing process: The delicate
cells had to be soldered by hand, many breaking during



assembly or installation. Other problems stemming from
the unclear scope, were late additions to the list of com-
ponents, the need to substitute a sensor late in the project
and a long list of change requests concerning the interac-
tion design. As a result, the project exploded in time, scope
and cost and yielded some undesirable outcomes, such as
limited battery lifetime or a rather complex firmware. In the
end, we created an interesting platform for environmental
research. On the one hand, it satisfied the requirements
we were given. On the other hand, it could have been more
suitable for the original application case if it had been re-
duced in functionality and tested iteratively with the involve-
ment of target users.

Take away message: Even if you are only responsible for
the electronics, challenge the requirements and clarify the
goal for each iteration.

Take-away Messages

1. Even minor changes in
the electrical operating
conditions can influ-
ence the performance
drastically.

2. Any change in any
physical condition can
influence any piece of
hardware in an unex-
pected way. Due to the
complex interplay, testing
is the only way to find
such problems.

3. Consider if the method to
reduce uncertainty is re-
ally having the expected
effect.

4. Try to get as much input
from as many experts as
possible, not to oversee
some important detail.
One expert might not be
enough.

5. Long term effects may
influence major design
decisions.

6. Even if you are only
responsible for the elec-
tronics, challenge the
requirements and clarify
the goal for each iteration

Discussion and Conclusion
Looking back at the last two decades of embedded system
design, the number of applications for Ubicomp are steadily
increasing. Our lab has worked on a variety of projects, in-
tegrating computing systems in everyday objects, heavy
machinery, buildings and novel sensing appliances, only to
name a few. Although the electrical engineer aspects were
challenging in terms of miniaturization and power consump-
tion, most issues were connected to the application environ-
ment. This highlights the close connection of these systems
to the deployment context, which is not limited to environ-
mental conditions, but also includes users, customers and
other researchers. With such complex dependencies, it is
impossible to specify every aspect in advance. Therefore
iterative development, deployment and testing is unavoid-
able. This requires suitable prototypes, which should focus
on a specific aspect for each iteration. Still, there are sev-
eral interdependent design tradeoffs, which must be consid-

ered: e.g. power supply, (wireless) communication, integra-
tion (size, complexity), robustness, user interface (and UX)
and development time and cost. Shortcomings in one as-
pect might lead to iterations with little results – failure in ro-
bustness leads to bad UX; failure in UX leads to bad battery
life; failure in power supply leads to broken communication
– as we have illustrated in the examples above. This high-
lights the interdisciplinary nature of embedded system de-
sign for Ubicomp applications which cannot be covered by
computer scientists or electrical engineers on their own. On
the other hand, there is an ever increasing number standard
platforms, Software/Hardware Development Kits (S/HDK)
and tools with a low entry barrier, which enable domain ex-
perts to come up with their own solutions. Overall, there are
still challenging projects ahead and we are looking forward
to the failures and lessons in the next 20 years.

REFERENCES
1. Michael Beigl, Hans-W Gellersen, and Albrecht

Schmidt. 2001. Mediacups: experience with design and
use of computer-augmented everyday artefacts.
Computer Networks 35, 4 (2001), 401–409.

2. Matthias Budde, Matthias Berning, Mathias Busse,
Takashi Miyaki, and Michael Beigl. 2012. The TECO
Envboard: A mobile sensor platform for accurate urban
sensing – and more. In Ninth International Conference
on Networked Sensing Systems (INSS’12). IEEE, 1–2.

3. Matthias Budde, Rayan El Masri, Till Riedel, and
Michael Beigl. 2013. Enabling low-cost particulate
matter measurement for participatory sensing
scenarios. In 12th International Conference on Mobile
and Ubiquitous Multimedia (MUM’13). ACM, 19.

4. Michael McCurdy, Christopher Connors, Guy Pyrzak,
Bob Kanefsky, and Alonso Vera. 2006. Breaking the
fidelity barrier: an examination of our current



characterization of prototypes and an example of a
mixed-fidelity success. In Proceedings of the SIGCHI
conference on Human Factors in computing systems.
ACM, 1233–1242.

5. Philipp M Scholl, Kristof Van Laerhoven, Dawud
Gordon, Markus Scholz, and Matthias Berning. 2012.
Jnode: a sensor network platform that supports
distributed inertial kinematic monitoring. In Networked
Sensing Systems (INSS), 2012 Ninth International
Conference on. IEEE, 1–4.

6. Marcel Schweiker, Sabine Brasche, Maren Hawighorst,
Wolfgang Bischof, and Andreas Wagner. 2014.

Presenting LOBSTER, an innovative climate chamber,
and the analysis of the effect of a ceiling fan on the
thermal sensation and performance under summer
conditions in an office-like setting. In Windsor
Conference: Counting the Cost of Comfort in a
Changing World, Vol. 8.

7. Karel Vredenburg, Ji-Ye Mao, Paul W Smith, and Tom
Carey. 2002. A survey of user-centered design
practice. In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 471–478.


	Introduction
	1) Unnoticed change in power supply
	2) Change in environmental conditions
	3) Uncertainty reduction causes uncertainty
	4) Lack of experience in specific detail
	5) Long term user behavior may lead to fundamental changes in system design
	6) Unclear requirements should be approached cautiously
	Discussion and Conclusion
	REFERENCES 

