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Abstract—Context prediction is the task of inferring information about the progression of an observed context time series based on its

previous behaviour. Prediction methods can be applied at several abstraction levels in the context processing chain. In a theoretical

analysis as well as by means of experiments we show that the nature of the input data, the quality of the output, and finally the flow of

processing operations used to make a prediction, are correlated. A comprehensive discussion of basic concepts in context prediction

domains and a study on the effects of the context abstraction level on the context prediction accuracy in context prediction scenarios is

provided. We develop a set of formulae that link scenario-dependent parameters to a probability for the context prediction accuracy. It

is demonstrated that the results achieved in our theoretical analysis can also be confirmed in simulations as well as in experimental

studies.

Index Terms—Pervasive computing, stochastic processes, location-dependent and sensitive, performance evaluation of algorithms

and systems, time series analysis.

Ç

1 INTRODUCTION

WITH distinct frameworks and architectures for context
computing, different representations, processing or-

ders, and hierarchies of context abstraction are proposed. In
1994, for instance, Schilit designed an architecture that
communicates context changes to applications [1] and
presented a distributed structure for context-aware systems.
In this architecture, agents provide context information that
is aggregated from multiple context sources. An aggrega-
tion and hierarchy is mentioned but a detailed description
is not provided.

These thoughts are further developed in the context
toolkit that was introduced in 2000 [2]. It constitutes a
conceptual framework to support the development of
context-aware applications and distinguishes between con-
text sensing and context computing. Context sensing de-
scribes the process of acquiring information about contexts
using sensors while context computing refers to the inter-
pretation of acquired contexts.

Later on, Schmidt presented a “working model for
context-aware mobile computing” as an extensible tree

structure [3]. The proposed hierarchy of features starts with
distinguishing human factors and the physical environment
and expands from there.

In 2004, the distributed middleware framework Solar
was presented by Chen [4]. It provides means to derive
higher level contexts from lower level sensor and aggre-
gated data from a multilayered directed acyclic information
fusion graph of event processing operators that represents
the underlying context structure [5], [6].

The abstraction levels of context in distinct stages of
context processing architectures are frequently referred to
by the notions high-level, low-level and raw data. A rough
distinction between low-level and higher level contexts is
made by Dey [2], Schilit and Theimer [7]. Following this
discussion, low-level context is used synonymously for data
directly obtained from sensors, while high-level context is
context information that is further processed. This proces-
sing can, for example, be semantic reasoning, an interpreta-
tion, data calibration or noise removal.

Mäntyjärvi distinguishes between context information
that describes an action or a condition [8], where following
his notion, the lowest abstraction level, raw data, would be
24�C or 70 percent humidity, for example. Following his
notion, the lowest abstraction level, raw data, can be, for
example, 24�C or 70 percent humidity. For low-level
contexts, these values are further processed to conditions
like “warm” or “high humidity.” Finally, a high-level
context is an activity such as, for instance, “having lunch.”

For all these distinctions, higher level contexts are
derived by further processing lower level context data.
We propose an alternative distinction on context abstraction
that is based on the amount of processing applied to
contexts in Section 2. Following this model, the context
abstraction rises with the amount of processing applied. In
particular, we do not restrict the number of distinct context
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abstractions to any finite set such as, for instance, “raw
data,” “low level,” or “high level,” but expect a fine-grained
transition among context abstractions. This computation-
centric view allows a comparison of contexts that is not
based on subjective classifications but rather on the amount
of processing that is actually applied.

We claim that, depending on the probability of error for
context processing operations, the order in which these
operations are applied might impact the overall probability
of error for context processing. Based on our definition of
context abstraction, we develop a probabilistic model to
estimate the accuracy of context values computed along
different context processing chains and conditioned on
various input parameters. In particular, and in contrast to
many studies on the provision of a high context accuracy in
the literature, we do not improve the accuracy of a specific
context processing operation but instead consider the
impact of environmental factors as well as the order in
which context processing operations are applied on the
context processing accuracy. The results derived in our
study enable new design alternatives in the development of
context aware applications. Consider, for instance, the
integration of a low-power sensor for context processing
in a resource-restricted device. While the resource restric-
tions of the device might not allow the selection of highly
accurate but computationally complex processing opera-
tions, the probabilistic model derived can provide the
optimum processing order of feasible processing operations
that maximizes the expected context processing accuracy.

For the example operations “Context acquisition,” “Con-
text interpretation,” and “Context prediction,” we show
that the order in which processing operations are applied,
the probabilities of error for these operations, the prediction
horizon, the context history size and finally the input
dimension all impact the overall context accuracy.

Similar to the common understanding [9], [10], [11], [12],
we model context prediction as a single context processing
operation. Typically, it is deployed as one of the last context
processing operations. We take a more general approach
and assume that context prediction can be applied at an
arbitrary context abstraction level.

Section 3 details existing approaches to context predic-
tion in the literature. Section 4 discusses impacts of context
processing order on the context prediction accuracy and
Section 5 presents results from experimental studies and
simulations that support our analytical findings. For these
studies, various algorithms introduced in Section 3 are
applied in different environmental settings and at different
positions in the context processing chain. Section 6
summarizes our results.

2 AN OPERATIONAL CONTEXT HIERARCHY

We classify the level of context abstraction by the amount of
processing applied to the data. With an increasing number of
processing operations applied to context data the context
abstraction level rises. We denote various levels of context
abstraction as Cali; i 2 IN and require Cali > Calj , i > j.
When we are able to quantify the amount of context
abstraction induced by an individual context processing
operation, this concept becomes operational.

In Section 4, for instance, we associate processing
operations with context abstractions proportional to the error
probability of these operations. Each processing operation
applied to context data also contains the probability of an
error and possibly also the probability to correct prior errors.

For the remainder of our work, we consider the three
context processing operations “acquisition,” “interpreta-
tion,” and “prediction.” In particular, we study the impact
of applying context prediction at various stages in the
context processing chain. The following section details
prominent approaches to context prediction.

3 ALGORITHMS FOR CONTEXT PREDICTION

The task of context prediction is defined as follows [13]:

Definition 3.1 (Context prediction). Let k; n; i 2 IN and ti
describe any interval in time. Furthermore, let T be a context
time series. Given a probabilistic process �ðtiÞ ! T , context
prediction is the task of learning and applying a prediction
function fti : Tti�kþ1;ti ! Ttiþ1;tiþn that approximates �ðtiÞ.

For context prediction, we therefore assume that the
observed context time series follows a probabilistic process.
Through the approximation of this process, an estimation of
the continuation of this time series is possible.

In the literature, context prediction is usually applied at
the end of the context processing chain (see for instance [9],
[10], [14]). Observe that this decision also impacts the type of
input data expected. Typically, contexts of low abstraction
levels tend to be numerical while with higher context
abstraction context might become symbolical. Consequently,
not all prediction approaches are applicable at arbitrary
context abstraction levels.

Several authors have studied aspects of future context
with the aim of enabling proactive behavior in applications.
In the MavHome project [15], movement of inhabitants of a
smart home are predicted by a pattern matching approach
[16]. The algorithm identifies frequent sequences of length 3
or greater in the recent history of symbolically represented
inhabitant contexts and provides the most frequent con-
tinuation of these sequences as predictions. Gradual
changes in inhabitant behavior are addressed by weighting
observed patterns. Related approaches that also utilize
exact matching of observed sequences are the ONISI system
[17], the IPAM algorithm to predict UNIX command line
instructions [12], [18] as well as the IPHYS method [19].

In many context-aware applications, however, exact
pattern matching may lead to inferior prediction accuracies,
as typical patterns can incorporate measurement errors and
slightly changed context durations or sequence orders. To
cope with these issues, an approximate pattern matching
method is proposed in [20]. This alignment prediction
approach is especially well suited to finding typical context
patterns in a time series of contexts. This time series can be
constituted of numerical and nonnumerical context data
alike. When k is the maximum length of any context pattern,
the overall running time of this prediction approach is
Oððk2ÞjS0jÞ ¼ Oðk3Þ [21].

Other approaches for context prediction are the stochas-
tic ARMA and Kalman filter-based methods. The author of
[9] derived in his studies that ARMA processes are able to
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achieve excellent results in context prediction. The method
is applicable to one dimensional as well as multidimen-
sional data sets and has a computational complexity of
Oðk logðkÞÞ [22]. It is, however, only applicable to contexts of
numeric context data types.

The Kalman filter is a stochastic method designed for
forecasting numerical time series. Examples for applications
of the Kalman filter technique to context-aware scenarios
are [23], [24], [25].

The Kalman filter computes a prediction based on an
arbitrary long history of observed contexts. The computa-
tional load of the method is Oðk4Þ [26]. It is not applicable to
non-numeric contexts.

In [27], a high prediction accuracy of a principle
component analysis (PCA) [28] based prediction approach
is reported on a data set with three context classifications
(home, work, elsewhere). The PCA is a statistical technique
to identify patterns in high-dimensional data. Basically, the
eigenvectors and eigenvalues of the covariance matrix of
input data are computed. Eigenvalues indicate the sig-
nificance of the corresponding eigenvector in describing the
data. It is then transformed to a new basis spanned by the
most relevant eigenvectors—the principal components. For
context prediction, the PCA is applied to binary indicator
feature vectors of the input data. The runtime of the method
is dependent on the number of distinct contexts jCj in a
scenario, as the length of the binary feature vector increases
with this value. When M patterns are utilized, the runtime
of the method is OðM � ðk � jCjÞ2Þ for nonnumeric context
patterns and OðM � k2Þ in scenarios with only numeric input
patterns (no transformation to binary indicator feature
vectors required) [29]. Especially in scenarios with non-
numeric input patterns, the method is well suited when the
number of distinct contexts jCj is reasonable.

For the PCA-prediction approach, a priori knowledge of
the length and occurrence time of common behavior
patterns is required. When typical patterns do not reappear
at similar times, the prediction accuracy is reduced. While
many patterns in ubiquitous settings are, in fact, very static
in nature (e.g., people sleep at night, have breakfast, work,
lunch, work, and finally come back home), other patterns
might not follow such a strong scheme, as, for example,
having phone calls or meetings.

A popular prediction approach is the prediction by
Markov models. It can be applied to numerical and non-
numerical data alike. However, a prediction that reaches
farther into the future implicitly utilises already predicted
data which might decrease the prediction accuracy. The
computational complexity is Oðk � jCj2Þ.

In [30], [31], Libo Song et al. study the accuracy of
Markov and compression-based prediction [32], prediction
by partial matching [33] and sampled pattern matching [34]
approaches of mobility patterns using a huge data set
sampled at Dartmouth campus. The Markov approach
achieved the best prediction accuracy for the next context
(in this case WLAN access points).

Despite numerous studies on context prediction, a concise
investigation of the various parameters that impact the
prediction accuracy aside from the algorithm applied was
not conducted. In this study, we provide a comprehensive

consideration of various aspects that impact the context
prediction accuracy; in particular, we consider the order in
which processing operations are applied to the context data.
We show that the context prediction accuracy differs for a
given context prediction algorithm depending on when it is
applied in the context processing chain. The extent of this
impact is, among other aspects, further dependent on design
parameters as the length of the context history, the
prediction horizon or the number of context sources utilized.

4 CONTEXT ABSTRACTION AND ACCURACY

This section presents our context abstraction model and
discusses the effects of prediction accuracy on various
orders of context processing operations (see Fig. 1).

The figure distinguishes between two context prediction
schemes in which the prediction is applied on a higher
context abstraction level (hl) and on a lower abstraction
level (ll) The ll-prediction scheme applies the prediction
operation prior to the context interpretation while the hl-
context prediction scheme applies these modules conver-
sely. In both cases, predicted and interpreted contexts of the
same abstraction level are achieved from the data acquired
from various context sources.

We make several assumptions on context data and
processing which we assume to be reasonable for many
application scenarios. In particular, we develop our model
for the three context processing operations acquisition,
interpretation, and prediction. As the number or type of
processing operations increases, the derived formulas must
to be adapted analogous to the analysis detailed.

Context acquisition preserves dimensionality: We as-
sume that context acquisition is an m to m operation. For
every single value obtained from a context source, a
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separate context acquisition step is applied that computes
exactly one ll-context.

Context interpretation alters dimensionality:Context
interpretation is not applied overlapping or combining time
intervals. However, it might alter the time series dimension
m at a lower context abstraction level to an o-dimensional
context time series at a higher context abstraction. In a
scenario in which the dimension is not altered, the two
variables o and m collapse to one single variable.

Context prediction preserves dimensionality: We model
a q-dimensional time series prediction by a q-fold one-
dimensional prediction. If required, this condition can be
relaxed by introducing an additional variable to describe
the number of predictions that are applied.

Error probability known and constant: For acquisition,
interpretation and prediction, we assume that the error
probability is known and constant for each application of an
operation. Probabilities for distinct types of operations are
independent of each other.

Processing operations are identical: We assume that the
processing operations utilized impose an identical error
probability on the input values regardless of the context
abstraction level on which they are applied.

Number of context values is constant: The number of
possible context values is constant among context types
of one abstraction level. In a scenario in which the number
of distinct values differs for different context types, this can
be modeled by individual variables that describe the
number of possible context values for each context type.

Uniform probability distribution: Errors that occur in the
interpretation or prediction steps are independently and
identically distributed.

No mixed abstraction level processing: Processing
operations utilize contexts of exactly one context abstraction
level at one time.

Assume i; k;m; o; vl; vh 2 INn0. For our discussion, k

represents the length of the context history while m and o

describe the dimensionality of the context time series before
and after the context interpretation, respectively. A context
may take one of vl values in advance and one of vh values
after context interpretation is applied. The number of
different configurations for a time series element of the
context history at one point in time is therefore vml before
and voh after context interpretation is applied. During
context processing, sources of error are the context acquisi-
tion, the context interpretation, and the context prediction.
Corresponding error probabilities are

. Pacq. The probability that no error occurs in the
context acquisition step.

. Pint. The probability that no error occurs in the
context interpretation step.

. Ppre. The probability that no error occurs in the
context prediction step. PpreðiÞ expresses the prob-
ability that no error occurs in the prediction of the
ith context.

We derive the probability that an arbitrary predicted
time interval is without error for context prediction applied
before (ll-context prediction) and after (hl-context predic-
tion) the context interpretation in the following sections. For

ease of presentation, we denote contexts prior to the
interpretation as ll-contexts and otherwise as hl-contexts.

4.1 Prediction after the Context Interpretation

The context acquisition is the first processing operation
applied to the sampled context information. For all k time
series elements in the context history, every one of the
m values is processed in the context acquisition (cf. Fig. 1).
Since Pacq describes the probability that error does not occur
in one of these operations, the probability that error does
not occur in any of the k �m context acquisition steps is Pkm

acq .
In the context interpretation, the m ll-contexts of every

one of the k context time series elements in the ll-context
history are interpreted to o hl-contexts that constitute a time
series element of the hl-context time series. Altogether, k � o
context interpretation steps are applied. Since Pint describes
the probability that error does not occur in one of these
steps, the probability that error does not occur in the whole
context interpretation process is consequently Pko

int. Finally,
PpreðiÞ describes the probability that the prediction of the
ith context is without error. Since the ith time series element
consists of o context elements, Po

preðiÞ is the probability that
error does not occur in the context prediction. The
approximated probability Papprox

hl that no errors occur in
the hl-context prediction process of one specific hl-time
series is then given as

Papprox
hl ¼ Pkm

acq P
ko
intP

o
preðiÞ: ð1Þ

In this approximation, we do not take into account that
errors occurring in one processing step might be corrected
by succeeding operations. The probability Pint

cor that an error
which occurs in a context acquisition step is corrected by an
error that occurs in the context interpretation step is

Pint
cor ¼

�
1� Pm

acq

��
1� Po

int

� 1

voh � 1
: ð2Þ

In this formula, 1� Pm
acq is the probability that an error

occurs in one of the m context acquisition steps that are
related to one context time series element and 1� Po

int

describes the probability that an error occurs in one of the o
context interpretation steps. With probability 1

vo
h
�1 , the

specific error required for a correction is observed from
all voh � 1 equally probable interpretation errors. Since vh
values are possible for every one of the o hl-contexts in one
time series element, the number of possible hl-time series
elements is voh. Consequently, the number of possible errors
is voh � 1 since one element represents the correct inter-
pretation that is without error.

We additionally consider the correcting influence of the
context prediction error. The probability PhlðiÞ that a time
series element i is accurately predicted if the prediction is
based on the hl-context time series is then

PhlðiÞ ¼
�
Pm
acqP

o
int þ Pint

cor

�k
P o
preðiÞ

þ
�
1�

�
Pm
acqP

o
int þ Pint

cor

�k� 1� Po
preðiÞ

voh � 1
:

ð3Þ

4.2 Prediction Prior to the Context Interpretation

For ll-context prediction, context prediction is applied in
advance of context interpretation. The probability that the
ith time series element is correctly predicted is described by
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Papprox
ll ¼ Pkm

acq P
m
preðiÞPo

int: ð4Þ

In analogy to the discussion above, we obtain the
probability PllðiÞ that time series element i is correctly
predicted as

PllðiÞ ¼
�
Pk
acqPpreðiÞ þ Ppre

cor

�m
Po
int

þ
�
1�

�
Pk
acqPpreðiÞ þ Ppre

cor

�m� 1� Po
int

voh � 1
:

ð5Þ

4.3 Application Scenario

The following example shall demonstrate the application of
these formulas in a practical setting. Assume the develop-
ment of continuous limited prediction capability as an
enhancement for a wearable device as, for instance, a wrist
watch. The watch shall be equipped with a low-energy
microvibration sensor (MVS) we studied in [35]. For the
prediction, the alignment algorithm we presented in [21] is
utilized. Seven situations (vh ¼ 7) shall be recognized by the
C4.5 decision tree. Table 1 details the accuracy for the
classification of these situations as observed in [35] together
with expected occurrence frequencies.

For simplicity, we utilize the mean normalized classifica-
tion accuracy of Pint ¼ 0:8012 as obtained from the values
detailed in the table. Since only one microvibration sensor is
utilized, we have m ¼ o ¼ 1. Similar to [35], we cumulate
the binary ticks of the sensor and cut the resulting integer
time series in the range ½0; 99� (vl ¼ 100) into distinct
samples during the context acquisition. Assume Pacq ¼
0:99 due to processing noise. Also, due to resource
restrictions, the context history is limited to k ¼ 5 values.
Assume that for the alignment prediction an evaluation of
training data has provided Ppre ¼ 0:83.

By substituting these values in (3) and (5), we obtain
PllðiÞ � 0:64 and PhlðiÞ � 0:28. Consequently, we expect a
higher prediction accuracy when context interpretation is
applied after context prediction in this setting.

4.4 Discussion

Having derived the context prediction accuracies for ll- and

hl-context prediction schemes, we now discuss the possible

impact of the context abstraction level on the context

prediction accuracy. We explore this impact by a compar-

ison of PllðiÞ and PhlðiÞ. These formulas are hard to grasp

due to the multitude of parameters involved. However, for

vl !1 and vh !1, the hl-and ll-prediction accuracies can

be approximated by Papprox
ll ðiÞ and Papprox

hl ðiÞ. Fig. 2 shows a

comparison between the approximated and the exact

probabilities. From the figure, we observe that for suffi-

ciently large values of vl and vh, observations made for

Papprox
ll ðiÞ and Papprox

hl ðiÞ are also valid for PllðiÞ and PhlðiÞ.
We therefore initially discuss Papprox

ll ðiÞ and Papprox
hl ðiÞ before

considering the more exact formulas PllðiÞ and PhlðiÞ. First

of all, we observe that the influence of acquisition errors is

equal for hl-and ll-context prediction schemes, since the

factor Pkm
acq appears in both formulas.

The fraction of these probabilities yields

Papprox
hl ðiÞ
Papprox
ll ðiÞ ¼ P

k
intP

o�m
pre ðiÞ: ð6Þ

Clearly, this term is smaller than 1 for all possible
configurations other than Pint ¼ PpreðiÞ ¼ 1. Consequently,
for sufficiently large values of vl and vh, context prediction
based on ll-context elements is superior to context predic-
tion based on hl-context elements.

However, this observation is only true for high values of
vl and vh. We therefore also study PhlðiÞ and PllðiÞ.

In Fig. 3, the probabilities that a prediction based on hl-
and ll-context elements has no erroneously predicted
context elements are depicted for several values of PpreðiÞ
and Pint. We observe that the probability for a correct
prediction decreases with increasing vh; k; vl;m, and o as
expected.

For ll-context prediction, the degradation is less harsh as
for hl-context prediction. We therefore conclude that the ll-
prediction scheme is better capable of dealing with this
configuration of the input parameters vh; k; vl;m, and o.

Fig. 4 illustrates the predominance of the ll-context
prediction scheme above the hl-prediction scheme. In these
figures, only the points below 1.0, at which the hl-context
prediction scheme is superior, are depicted. The ll-context
prediction has a smaller error probability for all but low
values of PpreðiÞ. The number of points where the ll-context
prediction is superior increases for higher values of
vh; k; vl;m, and o.

Impact of the acquisition accuracy: When Pacq is
decreased, the overall probability for a correct prediction
decreases as expected for both prediction schemes (see
Fig. 5). Note that for Figs. 5b and 5d the scaling of the Z-axis
is different since otherwise details are hardly visible. The
impact is serious for both prediction schemes. The error
probability of the acquisition process is therefore a highly
critical input to the overall prediction process regardless of
the prediction scheme utilized. However, the slope of the
probability plane and the probability of error is higher for
the hl-context prediction scheme.
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Classification Accuracies of the C4.5 Decision Tree
on Output Data from a Microvibration Sensor [35]

Fig. 2. Comparison of the approximated and exact probability of
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Ppre ¼ 0:9.



Impact of the number of context values: Next, we
consider the impact of the vl possible ll-context values.
Fig. 6 shows the probability that error does not occur in the
hl- and ll-prediction schemes. We observe that the effect is
minor. This property is similar for the vh of different hl-
context time series.

Impact of the ll-time series dimension: For the m context
sources utilized, as well as the dimension of the ll-context
time series, the context prediction accuracy decreases with
an increasing number of context sources for both prediction
schemes (see Fig. 7). The ll-context prediction performs
better for configurations with higher values of PpreðiÞ,
whereas for hl-context prediction the accuracy is better for
higher values of Pint.

From Figs. 7e and 7f, we observe that the ll-context
prediction scheme is advantageous for roughly PpreðiÞ >
Pint. Therefore, for high values of m the ratio of Pint to

PpreðiÞ determines which context prediction scheme is

beneficial.
Impact of the hl-time series dimension: The number of

parallel hl-context time series o has significant impact on the

context prediction accuracy. Fig. 8 shows that the impact is

more significant for hl-context prediction.
Impact of the context prediction horizon: For the value k

that describes the context prediction horizon, we again

observe that the hl-context prediction scheme has a greater

probability of error (see Fig. 9). This property intensifies as

the size of the context history increases.

5 EXPERIMENTAL AND SIMULATION STUDIES

In the following sections, we present results of experimental

studies and simulations that confirm our findings on the

impact of the order of context processing operations. For all
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studies, we utilize the approximate pattern matching

approach described in [21], [20] for its simplicity and

because it is applicable to hl- and ll-context data alike. This

method finds typical context patterns in observed se-

quences by approximate pattern matching. Suitable algo-

rithms for this task are detailed in [36]. We apply the

approach first detailed in [37].

Two metrics commonly utilized to measure the accuracy
of predictions are the root of the mean square error (RMSE)
and the mean absolute error (BIAS). For a predicted time
series of length n, these metrics are defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 pi � dið Þ2

n

s
; ð7Þ

BIAS ¼
Pn

i¼1 jpi � dij
n

: ð8Þ

In these formulas, pi denotes the predicted value at time i
while di is the value that actually occurs at time i.

Sections 5.1 and 5.2 detail experimental studies in
which we equipped test subjects with measurement
hardware. In Section 5.1, the context sequence of a group
of users is predicted based on input from temperature,
light, and vibration sensors. The results show that the
prediction accuracy of hl-prediction approaches is more
sensitive to changes in the prediction horizon than the ll-
prediction scheme.
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Fig. 7. Probability planes for hl- and ll-context prediction when the
dimensions of the ll-context time series is varied.

Fig. 5. Probability planes for hl- and ll-context prediction (k ¼ m ¼ o ¼
vl; vh ¼ 5).



In Section 5.2, the GPS-trajectory of a mobile user is
predicted over an experiment duration of 21 days. In
addition to the impact of the context horizon, we can
observe how the length of the context history also impacts
the prediction accuracy.

Further effects predicted by our analysis result from the
accuracy of the context interpretation method and the
number of context sources utilized. Since the interpretation
error might also depend on the complexity of an observed
context and the consideration of new context sources
inherently affects the context interpretation error, we were
not able to consider these aspects separately in experi-
mental studies. Therefore, in Sections 5.2 and 5.4, we
present simulations on synthetic data sets in which we
could isolate these aspects.

5.1 Impact of the Prediction Horizon

In an experimental study with five test subjects, we
consider the impact of the prediction horizon on the
context prediction accuracy. As detailed in Section 4.4,
we expect the hl-context prediction approach to be more
seriously impacted than the ll-context prediction method
(cf. Fig. 9). We prepared five subjects with our Akiba
measurement nodes that are equipped with a microvibra-
tion sensor (we utilized the MVS0608.02 from Sensolute
(http://www.sensolute.de)), an external ADXL335 3D
accelerometer from Analog Devices Inc (http://www.
analog.com), a temperature sensor (TC1047 from Microchip
Technology, Inc., http://www.microchip.com) and the
APDS-9003 Light photo sensor from Avago Technologies
(http://www.avagotech.com). The Akiba node was pro-
vided with access to a microSD card to store the sensed
information. Fig. 10 details the experimental setting and a
schematic of the Microvibration Sensor.

Unlike the signal produced by an analog acceleration

sensor, the output of the MVS is a digital binary vector.

The interesting information from these signals are the

unary transitions between the two states of the signal, as

opposed to the state of the signal itself at any given time.

This information is accumulated over a sample window to

generate a time series for further processing that generally

represents the frequency of state transitions of the MVS.

Fig. 11 details this procedure.
The five subjects had to repeatedly complete predefined

sequences of actions. These were recorded by the Akiba

measurement nodes and utilized for context prediction.

Data samples have been recorded every 0.01 seconds from

all sources.
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Fig. 9. Probability planes for hl- and ll-context prediction when the
context history size is varied.

Fig. 10. A subject equipped with our measurement device for the
experiment. The MVS and the accelerometer are attached at similar
places on either side of the Akiba node so that measurement data
are related.

Fig. 8. Probability planes for hl-context prediction when the dimensions
of the hl-context time series is varied.



Each triple in this sequence details the measurement
from the light sensor, the temperature sensor, and the MVS.

For activity recognition, the WEKA data mining toolkit
[38] was used to train a C4.5 decision tree [39] which we
selected for its prevalence in the activity recognition
literature using acceleration data [40], [41], [42].

The context sequences followed by the subjects were (in
this order)

. Sitting at a desk typing into a computer—Descending
stairs from the office—taking the elevator to ground
level—walking to the tram station—standing still,
waiting for a tram—riding the tram home.

. Standing still, waiting for a tram—riding the tram to
work—walking to the Institute—taking the elevator
to the Institute floor—ascending stairs to the office.

Fig. 12 shows the prediction accuracy for 3 of the subjects
by what amount a predicted hl-context varies from the
actual values measured.

Although the prediction accuracy deviates slightly
among distinct subjects, prediction accuracy achieved by
various prediction horizons is reasonably accurate and
deviates with increasing prediction horizon, as expected.

Furthermore, we observed that the hl-prediction ap-
proach was more seriously impacted by the accuracy loss
due to an increased prediction horizon. Fig. 13 demon-
strates this using the results from one of the test subjects.

In the figure, the relative decrease in the accuracy is
detailed compared to the accuracy at the smallest prediction
horizon. Observe that the decrease in accuracy is several

orders higher for the hl-prediction approach as predicted by

our analytic consideration in Section 4.4 (cf. Fig. 3).

5.2 Impact of the Context History Size

We study influences of varying levels of context abstraction

on the accuracy of hl- and ll-context prediction schemes on

a sampled GPS trajectory of a mobile user. The sampling

hardware consists of a mobile phone and a GPS-receiver. A

python script running day and night on the phone was used

to obtain the GPS-information from the GPS-receiver. The

simulation data consist of three consecutive weeks of GPS

samples. Every 2 minutes a GPS sample is taken. When no

GPS is available (e.g., indoors), we utilize the last available

sample to approximate the current position. For the

simulation, we utilize the samples on an 8-minutes and

12-minute scale, respectively, to reduce sequences of idle

periods where no significant movement is observed.
For ll-context prediction, we use the three-dimensional

GPS-samples as input data. For hl-context prediction, we

define a total of 36 hl-locations as, for instance, “Home,”

“Bakery,” “University,” or “Market.” The hl-locations are

specified by a GPS-center-location and a radius. A default

hl-location named “Outdoors” is applied when no other

location matches.
The context history covers a time interval of 40 minutes

for the 8 minute sampling interval and 1 hour for the

12 minute sampling interval.
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Fig. 13. Relative mean absolute error for one of the subjects over the
course of an experiment.

Fig. 11. The processing sequence for the MVS sensor output.

Fig. 12. Comparison of hl-context prediction accuracies for several subjects during the experiment.



In Fig. 14, the results for the ll- and hl-context prediction

algorithms are depicted. In the figures, the prediction

horizon is set to 2 and 3 hours for both sampling intervals.

The first six days of simulation show only minor prediction

errors as this period corresponded with the work schedule

of the individual who went to work the same way every day

with little variance. When the first weekend started, the

behavior changed and new time series occurred which had

not been previously observed. Therefore, the RMSE values

increase drastically. At the time of the second weekend, we

again observe an increase in the RMSE values, although it is

less harsh than the first one.
The ll-context prediction scheme performs better than

the hl-context prediction scheme and outperforms the hl-

context prediction approximately by factor 3 (see Figs. 14a

and 14b) regardless of the sampling interval.
However, during the first week of simulation the hl-

context prediction scheme performs better. Due to the

higher context abstraction level of the hl-context history, the

patterns observed in this period are more general and of a

simpler structure. At times when only few, easily distin-

guishable patterns are present, the higher context abstrac-

tion level simplifies the distinction of time series. However,

with the introduction of further context time series that are

harder to distinguish, the higher context abstraction level

becomes a hindrance.

When the context prediction horizon is modified, these

general trends stay evident (cf. Fig. 14c). Additionally, with

an increasing context prediction horizon, the advantage of

the ll-prediction algorithm over the hl-context prediction

algorithm increases (compare also Fig. 3).
Finally, we modify the context history length. For these

experiments, we chose a sampling interval of 20 minutes

and a context history length of 200, 300, and 600 minutes,

respectively.
From Fig. 15, we observe that with an increasing context

history length, the performance gain of the ll-context

prediction scheme over the hl-context prediction scheme

decreases (compare also Fig. 9).
In summary, we have observed that the ll-context

prediction scheme is advantageous when compared to the

hl-context prediction scheme on this location data set.

Furthermore, we could observe that the impact of an

increasing prediction horizon is more serious for hl- than

for ll-context prediction, as it has been suggested by the

analytical results in Section 4.
Finally, for an increasing context history size, the

accuracy gap between the accuracies of the hl- and ll-

context prediction schemes is narrowed. While ll-context

prediction schemes better cope with short context histories,

this advantage diminishes with an increasing context

history size.
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Fig. 14. Context prediction accuracies for hl- and ll-context prediction schemes at various sampling intervals.

Fig. 15. Comparison of ll- and hl-context prediction schemes.



5.3 Impact of the Interpretation Error

In order to obtain a more complete understanding of the
influence of the context interpretation error on prediction,
we create synthetic context data with special properties. We
also exclude the context acquisition step to focus on the
impact of the context interpretation step only.

In the GPS simulation, the impact of the interpretation
error is compounded with the impacts of the acquisition
and prediction errors as well as with further side effects.

These effects are known as concept drift and can be
summarized as hidden changes in contexts as described in
[43]. In the GPS-example above, the change of habits as well
as new colleagues or project partners might constitute a
concept drift.

For interpretation, we provide a known mapping
between the ll and hl-contexts. The error probability of this
module is configurable.

The context interpretation error is varied in different
simulation runs from 0.1 to 0.5. We decided for a uniform
distribution of errors. In this simulation, we describe the
accuracy by the fraction of accurately predicted contexts to
the number of predicted contexts.

We utilize four distinct simple one-dimensional, real-
valued, ll-context patterns with 41 elements each. Patterns 1
and 2 contain linearly increasing values from 0 to 20 and
from 0 to 40, respectively, while for patterns 3 and 4
the values linearly decrease from 40 to 0 and from 20 to 0.
In the course of the experiment, we repeatedly choose one
of these patterns with a uniform distribution and feed it into
the context prediction architecture.

The results of this simulation are illustrated in Table 2.
With a context interpretation error of 0.2 or higher, the ll-
prediction method achieves better accuracy. While it might
be feasible for some applications to utilize the ll-context
prediction scheme with low interpretation accuracies, the
accuracy of the hl-context prediction scheme diminishes at
such a fast pace that it becomes infeasible for arbitrary
applications. The greater impact of the interpretation error
on the prediction accuracy of the hl-prediction approach
was also predicted by our analytic findings (cf. (6)).

5.4 Impact of the Input Dimension

In this section, we study the influence of a varying number
of input data sources used and also vary the size of the
context history. In this simulation, the same modules as in
Section 5.3 are used. Furthermore, we increase the time
series dimension, where a maximum of 10 dimensions are
applied in the simulation. We use 12 different time series
of data values for each dimension, resulting in 120 distinct

time series overall. The acquisition and interpretation
error probabilities are set to Pacq ¼ 0:98 and Pint ¼ 0:94,
respectively.

For the interpretation error, we assume a uniform
distribution of possible errors, while we apply a Gaussian
distribution for the acquisition error. The Gaussian distribu-
tion models the property that small errors are more
reasonable than substantial errors in the acquisition module.

In each simulation run, we chose 12 context time series
out of the pool of time series one after another following a
uniformly random distribution and subsequently feed them
into the architecture.

In Table 3, we depict the fraction of the results obtained
by the context prediction based on ll-context elements to the
results obtained by the hl-context prediction scheme.

With increasing time series dimension, the predomi-
nance of the ll-context prediction scheme above the hl-
context prediction scheme diminishes while with increasing
context history size the predominance of the ll-context
prediction scheme above the hl-context prediction scheme
increases (compare also Fig. 6).

The number of erroneous contexts in the input time
series is higher for hl-context prediction schemes and
increases with increasing context history length. With more
errors in the input time series, the context prediction
accuracy consequently decreases.

Another trend visible in Table 3 is that the dominance of
the context prediction based on ll-context elements di-
minishes with increasing dimension of the context history.

6 CONCLUSION

We have studied the impact of the order of context
processing operations on the accuracy of the processing
result. We also considered the application of context
prediction at various context abstraction levels with several
examples.

The impact of distinct input parameters on the context
prediction accuracy of hl- and ll-context prediction schemes
was considered. These parameters are the length of the
context history, the dimension of the observed context
sequence, the dimension of the hl-context sequence as well
as the number of distinct values for hl- and ll-contexts.

We could show that these parameters have a different
impact on the prediction accuracy depending on the order
in which the context processing operations acquisition,
interpretation, and prediction are applied.

Also, the error probabilities for the context processing
operations impact the prediction accuracy differently when
the order of processing operations is altered. As a major
contribution of our study, we derive probabilistic formulas
that describe the overall error probability for a specific set
and order of context processing operations.
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TABLE 2
Context Prediction Accuracy

TABLE 3
Error Probability Ratios (Pll=Phl)



Regarding the dimensions of the input time series, we
observed that a higher prediction accuracy for an increased
dimension of the input time series can be achieved when
context prediction is applied after the context interpreta-
tion process.

A converse effect was observed for the length of the
context history. With an increasing context history length,
the prediction accuracy is higher when context prediction is
applied prior to the context interpretation process.

Furthermore, the accuracy of the context interpretation
has a significant impact on the context prediction accuracy.
In particular, for increasing error probabilities of the context
interpretation operation, we observed a tendency that the
prediction accuracy is higher when prediction is applied
prior to the context interpretation process.

In summary, in a scenario where the context interpreta-
tion operation can hardly cope with the noisy input data, it
is more beneficial to apply context prediction in advance of
the context interpretation process. When, however, context
interpretation is highly accurate, the application of context
prediction after the context interpretation might yield
improved context prediction accuracy.

We also observed that the context prediction accuracy is
tightly linked to the context acquisition accuracy. Conse-
quently, the main focus of the application designer should
be on the context acquisition procedure. Furthermore,
designers of context prediction architectures have to
consider the ratio of prediction to interpretation accuracy.
The number of context types available, however, has only a
minor influence on the context prediction accuracy.

For all these analytically derived results, we have
conducted experimental and simulation studies to confirm
the analytic findings. The experimental studies are situated
in mobile Ubiquitous Computing settings. In a first study, a
group of users completed predefined sequences of actions
that have been sampled by temperature, light, and vibration
sensors. In a second study, we monitored the GPS-trajectory
of a mobile subject using latitude, longitude, and altitude as
input data. The results from these experiments confirm the
results from our theoretical analysis.

A major result we show in the theoretical analysis and by
means of experiments is that the nature of the input data,
the quality of the output and the construction of a flow of
processing operations to achieve a prediction are correlated.
In particular, we expect greater accuracy of context
prediction when either the input data for context prediction
that is pre-processed by other context processing operations
has a high accuracy or when otherwise context prediction is
applied in advance of further context processing operations.
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