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Abstract. Spiking neural networks are promising candidates for repre-
senting aspects of cognitive context in human memory. We extended the
liquid state machine model with time-delayed connections from liquid
neurons to the readout unit to better capture context phenomena. We
performed experiments in the area of spoken language recognition for
studying two aspects of context dependency: influence of memory and
temporal context. For the experiments, we derived a test data set from
the well-known Brody-Hopfield test set to which we added varying de-
grees of Gaussian noise. We studied the influence of temporal context
with a further specially designed test set. We found that the temporal
context encoded in the pattern to be recognized was recognized better
with our delayed synapses than without. Our experiments shed light on
how context serves to integrate information and to increase robustness
in human signal processing.
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1 Introduction

Artificial neural networks (ANN) have been proposed as a means to model the
human ability to successfully adapt to, and react in a complex environment.
However, ANNs have the disadvantage of not modeling the information encoded
temporally in the signal. A further class of neural networks are spiking neural
networks (SNN), which mimic the behavior of biological neural networks. A
liquid state machine consists of a SNN with a readout unit implemented by
perceptrons. The readout unit of the LSM proposed by [12] interprets only the
current snapshot of the liquid states. In this paper, the concept of an LSM is
extended, so that not only the current liquid state can be taken into account
but also past liquid states. The extension of the approach is realized using time-
delayed connections from liquid neurons to the readout unit.

The structure of the article is as follows. We first introduce the classical
model and our extension for modeling memory (Sect. 2). We then present our
experimental setup and the test-bed we implemented, and discuss the results
(Sect. 3).
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2 Liquid State Machine Model

The human brain processes information from the environment in real-time and
immediately delivers a “meaningful” response. The liquid state machine (LSM)
was developed as a model to simulate properties of a biological brain and to
mimic its behavior for real-time processing [10]. A liquid state machine con-
sists of a spiking neural network (SNN) with a readout unit implemented by
sigmoid neural networks. The approach is based on the idea that a recurrent
neural network that is sufficiently dynamically complex and becomes excited by
a continuous stream of information u(·), such as a stream of auditory input,
retains this information for a longer duration while processing it. The complex
network becomes an information medium. The spatio-temporal stream is trans-
formed into a high-dimensional spatial pattern x(t), also called the liquid state,
from which information can be retrieved. The metaphor refers to water into
which stones are thrown. As the stones hit the water splashes and ripples on
the surface are created, from which an observer can infer the location where the
stone where thrown. The role of the observer is played by a readout unit, which
can be implemented by a simple machine learning mechanism, such as a neural
network [3].

Formally an LSM M is a filter LM . Mathematically, LM is an operator, which
when applied to a function u, yields an intermediate result x: x(t) = (LMu)(t).
The output x(t) depends on u(t) and, in a non-linear manner, on the previous
inputs u(s). A readout function fM transforms the output x(t) into a target
output y(t) so that y(t) = f(x(t)). The classical architecture of the LSM model
is shown in figure 1.

Fig. 1. The flow-graph shows the principal processing of a conventional LSM: A low-
dimensional input stream u(t) excites filter L, consisting of a recurrent neural network
(RNN); A readout unit is interpreting immediately the liquid state x(t) generated by
L. Inside of the dotted ellipse indicates water circles and represents the current liquid
state.

In general the readout unit f is memoryless, i. e. the former liquid states
x(s), s < t, are not considered at t. Therefore, the chosen type of liquid filter L
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must have the ability to retain the past information into the liquid state x(t). In
this way the readout unit f is enabled to generate adequate correct output y(t).
This will be only possible if the liquid filter L fulfills the separation property (SP)
[10]: For any input stream u, v the liquid filter L is reacting sufficiently different,
i. e. the liquid filter L is producing different liquid states x(t) by u(·) 6= v(·).

A liquid filter L which exhibits the SP, features also the property of fading
memory (FM) [2]. That means that the liquid filter L is retaining information
of an input stream u over a fixed time span. In the modeling of information
processing, the fading memory property is essential because novel incoming in-
formation can only be processed as novel information if previous information
fades.

In the realization of the LSM, the liquid state x(t) is modeled by a n-
dimensional vector. The dimension of the vector is fixed by the number of neurons
used in the liquid filter. For the neuron-type, the classical Leaky-Integrate-and-
Fire-neuron (cf. [10] for an introduction) is chosen, which fires a spike at a fixed
time point ti and produces a discrete time series of spikes called spike train. The
spike activity of every single neuron in a time window determines after a low-
pass filtering the n components of the liquid vector. The n-dimensional vector is
called a snapshot of the liquid state x(ti). In practice, a time window of length
with 30ms up to 150ms is chosen based on experimental data acquired from
human behavior experiments [4].

In comparison to its simple neural network readout unit, the LSM achieves
better classification results. The advantage of the LSM is its specific way of inte-
grating temporal context: everything within a certain time window is retained,
but everything outside is removed as the fading memory property requires. The
question then is how memories, as they are retained for a longer duration, i.e.
on a coarser temporal granularity, can be integrated with the model. While we
cannot offer an answer to this question on the neurobiological side, we propose
the idea of delayed synapses to model integration on a coarser level of temporal
granularity, i.e. for time windows of a longer duration [13].

The challenge is to integrate memory functionality into the model, in order
to acquire context. To realize this we employ so-called delayed synapses, which
set back the emitting spikes of a neuron Ni by using different time delays. In
particular all delayed synapses belonging to a neuron Ni are leading to the
readout unit directly. In this way past information that occurred before the
current time window of the LSM is provided to the readout unit. When the
readout unit captures the current liquid state x(t), it captures also the past
simultaneously. In Figure 2, an operating LSM with delayed synapses is shown.

3 Experiments

To give proof to our approach we initially deployed the Brody-Hopfield bench-
mark to show the capabilities of the LSM. The benchmark itself originates in
speech recognition and was used to test SNN models by Brody and Hopfield [5,
6] for the first time. The speech benchmark consists of 500 audio files, recorded
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Fig. 2. Illustration of the readout event. The three readout synapses delay the spike
emitted by the liquid-neuron Ni by di1 , di2 and di3 respectively, so that the readout
unit can evaluate liquid-states with regard to the time. During training phase of the
readout unit the weights αi1 , αi2 and αi3 will be adjusted by means of the p-delta
learning rule.

by five female speakers speaking the digits “zero” to “nine”. The task here is to
recognize the spoken digits successfully. For testing our approach we transformed
the audio files into spatio-temporal spike patterns by using auditory models of
the human ear. It is assumed that the inner hair cells of the ear transmit the
electromagnetic pulses called spikes onto the auditory nerve directly.

To build up the evaluation platform a generator based on work in [11] for cre-
ating SNN was implemented. SNN with 135 neurons and 40 input neurons were
created and for the readout unit of the LSM an one-layer ANN was deployed,
called parallel perceptron which was developed by Auer [1].

3.1 Test with noisy Brody-Hopfield digits

So far, the whole framework of the LSM were integrated and tested by the
Brody-Hopfield benchmark. Here, the digits ”one” and ”four” were used to train
and test the LSM and white noise was added to increase recognition difficulty.
The new data set consists of 500 samples partitioned into randomly chosen
300 samples for training and 200 samples for the test set. During the training
phase 10-fold cross-validation was applied. The evaluation was performed by two
randomly generated LSMs, i. e. lsm 0adv2.net and lsm 0adv8.net were chosen.
The readout interval for the parallel perceptron was set to [150, 180]ms.

The tests yield success rates of 85.5% and 71.0%, respectively. Training the
readout unit without any liquid filter resulted in 62.5% success. The evaluation
results of our model extension are listed in table 1. The setting for each trial is
fixed by the number of delayed synapses and the delay. For example, the set-
up with 3 delayed synapses and 10ms delay means three links from each liquid
neuron to the readout unit delays the emitting liquid neuron in 10ms, 20ms
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Fig. 3. Two patterns in the ArtBM-Benchmark.

and 30ms, respectively. In this way context information from the past can be
captured by the readout unit.

number of lsm 0adv2.net
synapses 5ms 10ms 15ms 20ms 30ms 50ms

1 del. syn. 84.5 87.0 87.0 86.0 86.5 86.0
2 del. syn. 86.0 87.0 88.5 88.5 87.5 86.5
3 del. syn. 87.0 87.5 88.5 88.0 85.5 87.0
5 del. syn. 87.5 89.0 87.5 86.0 89.5 –
7 del. syn. 88.0 88.0 86.0 87.5 – –

10 del. syn. 89.5 86.0 89.0 – – –
1
n

∑n
i=1Ri 87.08 87.42 87.75 87.2 87.25 86.5

lsm 0adv8.net

5ms 10ms 15ms 20ms 30ms 50ms

72.0 73.0 73.0 74.0 76.5 73.5
72.0 74.0 77.5 74.0 77.0 83.0
71.5 77.0 75.0 75.5 80.5 88.0
74.5 74.0 76.0 81.5 91.5 –
76.5 76.0 81.5 93.0 – –
74.0 81.0 92.0 – – –

73.42 75.83 79.17 79.60 81.38 81.5
Table 1. Performance results of trails with different number of applied delayed
synapses.

The evaluation described previously revealed a conventional LSM provides
in general better performance than a trained parallel perceptron without a pre-
ceding liquid filter. As table 1 shows, the model extension using time delayed
synapses provides better performance than the classical LSM. However, through
the evaluation new issues came up: Why is there a large performance difference
between the investigated LSMs? Why does the performance not rise steadily by
increasing the number of delayed synapses? Further on, why does the perfor-
mance vary of the chosen LSMs differently strong? In the following this issues
are discussed.

3.2 Further investigation results

Investigating the separation property (SP) of the engaged LSMs by using con-
structed input streams with known distances to each other which are calculated
by l2-norm, the output trajectories indicate the separability during time (not
depicted here). These explained the strong different performance of the LSMs,
but did not show the proof of real improvement. In order to do this, we designed
an artificial benchmark for binary classification called ArtBM. Here, the samples
consisting of spatio-temporally spike patterns were constructed in the manner
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that spatial information in the signal is suppressed and temporal encoded. The
spatial and temporal structure of the samples is best explained by Fig 3. The
entire benchmark consist of 1500 samples divided into 1000 randomly chosen
samples for training and 500 test samples. For the evaluation setting the read-
out interval was fixed to [510, 540]ms. The evaluation of the classical approach
resulted in 59.6% and 81.4% for the two chosen LSMs, respectively. The results
of the model extension are listed in table 2. Here, the model extension yielded
almost better performance by choosing different evaluation settings. The best
result with 99.8% success was achieved by choosing 5 delayed synapses and a
time delay of 20ms. In this trial only 1 of 500 test samples was classified false.

1 delayed 2 delayed 3 delayed 4 delayed 5 delayed
lsm 0adv2.net synapse synapses synapses synapses synapses

10ms 64.6 72.6 83.0 92.0 94.8
20ms 76.2 93.0 93.8 93.8 96.2
30ms 86.8 89.8 93.6 93.8 91.6
60ms 85.4 92.8 90.2 86.6 85.8
90ms 79.8 82.2 83.0 88.2 90.4
180ms 78.2 90.4 90.4 – –

1 delayed 2 delayed 3 delayed 4 delayed 5 delayed
lsm 0adv8.net synapse synapses synapses synapses synapses

10ms 81.4 83.4 89.8 97.2 99.2
20ms 84.0 98.4 98.6 98.6 99.8
30ms 91.8 98.6 98.6 99.2 98.8
60ms 94.8 98.0 98.4 99.2 99.0
90ms 82.4 89.8 91.6 82.8 94.4
180ms 84.6 71.8 71.8 – –
Table 2. Evaluation results of our LSM model extension

4 Conclusion

Spiking neural networks are promising candidates for studying aspects of tem-
poral context in human memory. In this paper, we extended the liquid state
machine model with time-delayed connections from liquid neurons to the read
out unit to capture and study the influence of temporal contexts of different du-
rations. We performed two types of experiments in the area of spoken language
recognition. For the first experiments, we derived a test data set from the well-
known Brody-Hopfield test set to which we added varying degrees of Gaussian
noise. We studied the influence of temporal context with a specially designed test
set. We found that the temporal context encoded in the pattern was recognized
better with our delayed synapses than without. Our experiments shed light on
how context serves to integrate information and to increase robustness in human
signal processing.
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LSM are just one possible approach in which it is possible to model context-
dependency. In future works we plan to generalize our approach to context-
dependency to generalize it to alternative approaches, such as the “echo state”
approach [7, 8]. In particular, we hope to find an implementation for our context-
dependent pattern recognition that is similarly powerful as LSMs and also ap-
plicable as a tool for real-time pattern recognition.
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