
A Protection Scheme For Security Policies In Ubiquitous
Environments Using One-Way Functions

Håkan Kvarnström1, Hans Hedbom2 and Erland Jonsson

Department of Computer Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden

{hkv, hansh, erland.jonsson}@ce.chalmers.se

Abstract

This paper addresses the problem of protecting security policies and other security-related
information in security mechanisms and products, such as the detection policy in an Intru-
sion Detection System (IDS) or the filtering policy in a firewall. Unauthorized disclosure
of the such information is particularly serious, since it might reveal the fundamental prin-
ciples and methods for the security and protection of the whole system or network, which
is much more far-reaching that the protection of the target system or security mechanism
itself. This problem is especially noticeable in ubiquitous environments where a possible
large number of nodes need knowledge about the security policy of their domain. In order
to avoid this risk we suggest that security information should be protected using one-way
functions and the paper suggests a basic scheme for protecting stateless policies. A state-
less policy is a policy that only takes the current event into consideration when decisions
are made and not the preceding chain of events. Thus, the process of comparing events
towards the policy, i.e. making decisions, could be done in much the same way that pass-
words are hashed and compared in UNIX systems. However, one important distinction is
that security policies contain a certain variability that must be handled and a method for
this is discussed. The suggested scheme is very basic and has certain drawbacks as regards
practical implementation, but does still clearly demonstrate the protection principle. We
expect further research to result in extended methods that are more suitable for practical
design.

1 The author is also with Telia Research AB, SE-123 86 Farsta, Sweden.
2 The author is also with the Department of Computer Science, Karlstad University, SE-651 88 Karlstad,

Sweden.

2

Keywords: intrusion detection systems, detection policy, protection schemes, one-way
functions.

1 Introduction

The protection of computers and information systems is vital for the success of virtually
every enterprise. Distributed system architectures connecting a large number of computers
raises questions on how to better protect the information and resources of these systems.
Traditionally, access-control services such as firewalls [3, 4], are used to control access to
systems and services. However, the use of access-control components only, could present
a single-point-of-failure. A flaw in an access-control component could lead to loss or theft
of information or computer resources by allowing an intruder to circumvent existing secu-
rity measures. Intrusion detection systems (IDS) [13] is a technology that attempts to
detect unauthorized activities and suspicious events (behavior), that is, events that violate
the effective security policy for a certain domain. Intrusion detection systems provide a
second line of defence, allowing intrusions to be detected in the event of a breach in the
perimeter defence. In addition, intrusion detection systems allow misuse or suspicious
behavior of users to be detected.

The security of the IDS itself is important for several reasons. First, it is obvious that
the functionality of the IDS, i.e. its ability to operate as expected, depend greatly on the
security of the IDS itself. i.e. its ability to resist attacks. If an intruder succeeds in mount-
ing an attack against the IDS, either by taking over the IDS, corrupting its input data or its
detection policy, or in other ways fool the IDS, it will no longer give alarms for attacks
launched against the target system. In a report by Newsham and Ptacek [15], several suc-
cessful attacks against existing intrusion detection systems are identified. Further, the
information contained within the IDS (e.g. audit data) may be misused by an intruder to
gain knowledge about the target system (e.g. weaknesses, protocols used, etc.) that would
indeed facilitate attacks. However, the most serious perspective, especially for large, dis-
tributed systems, is that the IDS, or other security mechanism, could contain information
such that the unauthorized disclosure of it would endanger the security of the whole com-
puter network. Examples are overall security properties, lists of trusted hosts and informa-
tion on unprotected vulnerabilities.

The argumentation above holds for firewalls as well, or indeed for any security mecha-
nism that stores policies or other security-related information. However, in the following
we will mainly discuss IDSs. One main issue for an IDS is how to conceal its policy. This
could be achieved by using encryption, as discussed by Neuman [11] for the NIDES sys-
tem [12]. His method requires storing keys on the local host, which virtually means that
anyone that gains access to the host also gains access to the key and thereby the policy.

A Protection Scheme For Security Policies Using One-way Functions 3

Hiding the key does not really help in the long run as Shamir and van Someren demon-
strates in [14]. Beside this, we could be stuck with the problem of distributing keys to a
possibly vast number of hosts, if the IDS or the firewall is distributed or cooperating with
other IDSs or firewalls.

Another way of protecting the policy could be to use one-way functions. To our
knowledge this has not been previously discussed. Thus, this paper presents a first attempt
towards this type of protection. It suggests a method for protecting stateless policies using
one-way functions. We are fully aware of the fact that stateless policies only can be used to
describe a limited set of decision rules, but are nevertheless convinced that it could serve
as a starting point for discussing the issue and for constructing schemes to handle more
complex types of policies for firewalls and IDSs.

2 The need for policy protection

2.1 Policies
Security mechanisms, such as IDSs and firewalls are equipped with a decision function e.g
when to send an alarm in the IDS case or whether or not to let traffic through in the fire-
wall case. In order to make those decisions the systems uses some form of rule set (or rule
base) that serves as the basis for the decision. We call this rule set the detection policy in
the IDS case and the filtering policy in the firewall case. When there is no need to separate
the two we will collectively refer to them as a policy. Examples of policies are:

– Rules for access-control to objects (e.g. access control lists)

– Misuse signatures

– Statistical user or system normal behavior

The policy is usually expressed in a description language describing the event or combina-
tion of events that is considered inappropriate (or in the firewall case: usually appropriate).
In this paper, we define an event as an occurence of a single activity which is registered
and stored in an audit-log. The mechanisms presented in this paper are not limitied to
events of a certain type or having certain characteristics, as long as they can be coded or
described as a (binary) string. A typical event would be an audit-log record describing user
activity (e.g. accessing a web-page, logging into a service etc.). Table 1. shows five events
generated as a result of remote logins to a server host.

4 A Protection Scheme For Security Policies Using One-way Functions

Table 1. Five events generated by remote logins to the host “jellybean”.

For example, a rule in a filtering policy could state that connections between the inter-
net and the intranet are only allowed if they originate from the intranet and a rule in a IDS
could express that logfile entries containing the string “login successful” and a time stamp
between 11 pm to 4 am indicates a possible intrusion.

A typical intrusion detection systems rule-base can be divided in two parts. The first
part consists of a set of well-known (standard) attack signatures, often provided by the
supplier of the IDS. This part is updated regularly similar to virus scanners. The second
part of the rule-base consists of site-specific threats and vulnerabilities, which may be
unique to the target system one wishes to protect. For example, the target system could be
configured to run old versions of software for compatibility with legacy systems or use
applications and protocols known to be vulnerable to attack such as NFS and NIS. In the
next section, we show that the latter type of rule-base impose a threat to the target systems.

2.2 The need for protection
The main reason for using an IDS is to improve the security of the target systems by add-
ing a second layer of defence. However, there are inherent security concerns also for this
second layer as it may introduce new security risks [7, 8]. These concerns involve the pro-
tection of information and information flow within the IDS and how the information can
be used for illicit purposes. In this section we will discuss the security properties of an IDS
and argue that the confidentiality aspect for the detection policy is by far the most impor-
tant requirement.

2.2.1 Confidentiality and integrity of audit data
Audit data generated by the target systems within an IDS domain may contain sensitive
information not to be disclosed outside the domain. The sensitive information might be
about users and target systems as well as application related data. In some cases, the mere
existence of an event may be confidential as it reveals some form of activity. Nor should
audit data be subject to insertion, deletion or alteration as demonstrated in a paper by Pta-
cek and Newsham [15]. On the other hand, breach of confidentiality or integrity of audit

Jun 24 18:19:42:jellybean sshd[1084049]: log: Connection from 192.168.0.1 port 56722

Jun 24 18:21:12:jellybean sshd[3472342]: log: Connection from 192.168.0.244 port 16239

Jun 24 19:29:14:jellybean sshd[1265421]: log: Connection from 192.168.0.123 port 54346

Jun 24 20:19:01:jellybean sshd[9934742]: log: Connection from 192.168.0.220 port 16222

Jun 24 21:45:41:jellybean sshd[1124234]: log: Connection from 192.168.0.11 port 201

A Protection Scheme For Security Policies Using One-way Functions 5

data presents less a risk than for policies. The result of a confidentiality or integrity breach
can often be limited to a missed detection or a false alarm.

2.2.2 Confidentiality and integrity of the policy
Similarly, an attacker may break into an intrusion detection system and disable the

detection mechanism so that target system attacks can be launched without being dis-
closed. However, if and when the attack eventually is detected, the system can be taken
offline, its integrity restored, and finally brought back into operation. The damage is lim-
ited to the loss of detection capability over a period of time. On the contrary, if the rule-
base is disclosed during the attack the attacker can learn about inherent vulnerabilities of
the target system as well as of the whole distributed system, a knowledge that would still
remain even when the integrity of the IDS is restored. The inherent vulnerabilities of the
target system may not be possible fix and hence, permanent damage has occurred. Thus,
the main reason for our concern about the confidentiality of the rule-base is that a breach
of confidentiality is irreversible and cannot be undone.
As an example, consider a target system running NFS to share files between clients. A pol-
icy rule could be defined to detect the use of NFS (UDP) packets containing certain strings
(e.g. /etc/passwd) between a certain NFS client and a dedicated server. If such a policy
rule were stored in cleartext in the rule-base, an attacker would learn about the inherent
vulnerability that exists and possibly exploit it to gain access to the information in the sys-
tem. However, this particular attack signature is target specific and an attacker may not
discover the vulnerability when conducting a vulnerability scan of known attacks.

Our experience when applying intrusion detection systems is that the rule-base con-
taining target-specific attack signatures increases rapidly as the complexity (e.g. number
of hosts and services) of target systems grows. This is different from the standard attack
rule-base, which is not affected by the complexity of the target system.

3 Architectural implications

Increased use of network encryption and virtual private networks providing end-to-end
security between systems, makes it hard for intrusion detection systems to monitor events
in the target system or in the network. One solution to this problem is to execute the detec-
tion system on the end-systems where the encryption terminate (e.g. a personal IDS). This
means that the security policy will be distributed and a distributed intrusion detection
architecture (IDA) [7] results. It is clear that the IDS ability to protect its detection policy
is highly dependent on the intrusion detection architecture.

6 A Protection Scheme For Security Policies Using One-way Functions

An IDS is distributed when the different components of the detection system are dis-
tributed in some respect. Figure 1 illustrates a distributed intrusion detection architecture
where components are located in different domains.

Figure 1. A distributed intrusion detection architecture (IDA)

In a strictly centralized system, the detection policy is known only to a small part of
the system. However, in a distributed intrusion detection architecture, the policy is distrib-
uted to all of the decision functions that participate in the system (as described by
Figure 1). In addition, the end-systems are not dedicated for the purpose of detecting
intrusions (i.e. many other applications execute on the systems) which alters the threat
model for the IDS. An end-system such as an office PC are often under control of the user
which makes it harder to enforce the security policy in practice. Thus, the detection policy
may be known to a possibly large number of entities. This implies that the security of the
policy is dependent of the security of all the entities that have knowledge of the policy and
of the security of the distribution channel.

4 Protecting a policy using one-way functions

One way of solving the problem of how to protect the policy could be to use strong one-
way functions. In this section we will discuss the concept of one-way functions and dis-
cuss how they can be used in order to protect stateless policies.

Detection
Policy

Input Events

Domain A

Domain B

Decision
function

Collection
function

Input Events

Decision
function

Collection
function

Decision
function

Collection
function

Domain C

Input Events

A Protection Scheme For Security Policies Using One-way Functions 7

4.1 The concept of one-way functions and commitment
One-way functions are one of the fundamental building block of cryptography. Many
security mechanisms providing security services such as authentication, integrity protec-
tion and confidentiality depend on the unique properties provided by one-way functions.
Informally, a one-way function [6] is a function : where and are any two sets,
such that:

(1) for any is “easy” to compute,

(2) given the information that , there is no “feasible” way of computing for any
reasonable large proportion of the belonging to ,

(3) for any . This property states that the function must be collision
free, in the sense that no two values of must result in the same belonging to

Assuming that the set is sufficiently large, an exhaustive search will be computationally
infeasible and thereby impractical. The UNIX password protection scheme [10, 5] is an
example of a security mechanism making use of one-way functions. It provides confiden-
tiality of the users’ passwords, thus preventing disclosure of the passwords even though
the password file itself is disclosed. By calculating a one-way hash (using the DES-
encryption scheme) of a user’s password, it is protected from disclosure but the resulting
hash can still be used to verify that a user entered a correct password during the authenti-
cation process. This is achieved by calculating a one-way hash using the password pro-
vided during authentication and thereafter comparing the resulting hash with the stored
hash for that particular user. If the two hashes are identical, the user must have entered the
correct password and the authentication succeeded. Given the list of all one-way hashes
for the users of the UNIX system, the only way of retrieving the cleartext password is to
perform an exhaustive search over the entire domain of clear-text passwords. However, in
practice, the number of possible passwords are often limited by the fact that human users
normally choose words and phrases as passwords (e.g. names, the make of cars, or other
easy to remember words) instead of random strings. Thus, making the search easier.

Several candidate one-way functions have been proposed. Factoring and the discrete
logarithm problem are two well-know “hard” mathematical problems that often are used
to create one-way functions.

4.2 Protection principle
Informally, the policy classifies an incoming event (or sets of events) into predefined cate-
gories such as legal events, intrusion attempts, intrusions etc. In its simplest form a secu-

f S T→ S T

x S f x(),∈

f x() y= x
y T

x z, S f x() f z()≠,∈
S y T

S

8 A Protection Scheme For Security Policies Using One-way Functions

rity policy states what patterns or signatures of events that are authorized/unauthorized. A
default accept policy would search for events having a certain signature and classify those
as unauthorized whereas a default deny policy makes the assumption that all events are
unauthorized except those that explicitly matches a defined signature. Most rule-based
IDS have taken a default accept standpoint due to the difficulty of defining all authorized
events while most firewalls have a default deny policy, only letting through the events
matching the policy.

The following simple example show how signatures can be used to detect policy viola-
tions in a default accept policy. Consider a set of input events all of which
are represented by k-bit binary strings. Further, the set is the set of “sig-
nature strings” that identifies an unauthorized event. Whenever

the event being analyzed matches a detection signature and an
alarm is raised. The detection scheme is fairly simple as it only involves comparing events
over X with all strings in U searching for identical pairs. Now consider the set

where is any cryptographically strong one-way
function. For each signature, a hash is calculated and stored. Due to the inherent properties
of the one-way function, it is hard to deduce any given . Thus, can be
made publicly available without compromising the secrecy of . The computational
effort to successfully deduce is on average equal to an exhaustive search of of
the domain of . Thus, assuming where , has a binary length
of bits. The computational effort to find given would (in average)
require operations.

Detecting policy violation in the default accept case is a straightforward process of
applying the same one-way function to all input events and compare the resulting
values to the stored values of . If a match is found, the input event is an unauthorized
event and an alarm is raised. Many intrusion detection systems utilizes simple string
matching to find unauthorized patterns in the input data. For example, an IDS could search
a UNIX syslog looking for strings containing the pattern “su root failed” which would
indicate a failed attempt to gain administrative privileges on the system. By using one-way
functions to hide the string patterns, it is virtually impossible for an intruder to find out
about the detection policy of the system.

Policy violations in the default deny case can be handled in a similar manner as dis-
cussed above. The only difference in this case is that , and thus , will contain allowed
events and actions are taken if , is not a member of .

x1 x2, …xn X∈
u1 u2, …um U∈

xi u j where i n j m≤,≤,=

u1' u2', …um' f u1() f u2(), … f um() U'∈= f

u U∈ f u() U'∈ U'
U

u U∈ 1 2⁄
U u1 u2, …um U∈ u u U∈

k u U∈ f u() U'∈
2

k 1–

x X∈
U'

U U'
f x() x X∈ U'

A Protection Scheme For Security Policies Using One-way Functions 9

5 Handling variabilities

In a normal case one input value will lead to a unique output value from the one-way func-
tion. This means that even a small change in the input value will generate a totally differ-
ent result. This is a desired property in traditional use of one-way functions,but it is
undesirable in the policy case. In this section we will discuss why we need some way of
handling variabilities in the stateless policy case and give some ideas on how this could be
achieved using different methods. We will also elaborate on what we believe to be the
shortcomings and merits of the different methods.

5.1 Why do we need to handle variabilities?
When describing rules in a policy it is useful to be able to handle variables or to express
intervals. This means that the protection scheme for the policy must also be able to handle
this variability in some way. For example, it might be desirable to state in the policy that
certain actions are forbidden for every user or that a given user is not allowed to login to a
number of network addresses. If we divide the information in fields there will be fields
containing variables in both the cases above. In the first case the value in the forbidden
action field will be constant but the value in the user field is variable and in the second case
the value in the user field is constant but the value in the network field is variable. In the
latter case it is also useful to state an interval, i.e this is the range of network addresses that
are allowed or disallowed.

5.2 A first approach
One naive approach to handle variability might be to apply the one-way function on every
combination of the constant field or the hashed field. This would, however, lead to a very
large collection of values that need to be compared. In small systems this might be tolera-
ble, but in large systems it would be unacceptable. The next approach would be to skip the
variable fields and just apply the one-way function on the fixed fields. This solves the
problem in the first case, where we do not care who the user is, i.e all possible values of
the user field is considered illegal. However, it will not solve the problem in the second
case above since not all of the possible values in the network field might be considered
illegal. Besides, it also has a serious side effect. By applying the function on some fields
and not on others we are giving away information on which fields we are interested in and
that in turn might, under certain circumstances, point an intruder towards which attacks we
are looking for.

10 A Protection Scheme For Security Policies Using One-way Functions

5.3 Using fuzzy commitment to handle intervals.
Fuzzy commitment is a a way of doing commitment suggested by Ari Juels and Martin
Wattenberg [9]. It is essentially a method that accepts a certain amount of fuzziness (i.e
variability) in the witness1 used. Its main use is in the area of authentication by means of
biometrics (e.g. fingerprints etc.) where it is almost impossible to get exactly the same
result from two consecutive scans of the same object. For example a thumb is newer
placed in the same way twice on a thumb scanner. Juels et al. show that by using a combi-
nation of error correction methods and one-way functions one can create a commitment
scheme that will accept different witnesses as long as they only differ up to a controllable
threshold. In essence the method works as follows: Assume that we have a witness and
an error correction function that corrects codewords from the set . Now, choose a

and calculate . Commit by using a strong one-way function and store
. To decommit a user has to give a witness that is sufficiently close to so that the

correction function can correct to . The amount of fuzziness accepted is thus
dependent on number of errors accepted by the correction function and on the value .

Fuzzy commitment could be used to handle intervals in the following way. The basic
idea is to let all the values in an interval hash to the same cryptographic hash-sum. In this
case we do not really need a proper error correction function but merely a function that
groups values together. Such functions could be used in fuzzy commitment, e.g. Juels et al
[9] uses a lattice rounding function rather than a proper error correcting function as an
example of how the scheme works. The lattice rounding function in their example is a
function that rounds points in the plane to the nearest multiple of 100x100. If we interpret
the values in the variable fields as integers we could use a function that truncates values
downwards to the nearest multiple of the selectable integer , e.g. if then

and so on. Lets call this function . Such a function could eas-
ily be generalized by making an parameter to the function (e.g.). Let
the witness represent the lower end of the interval and let be the width of the interval.
Choose randomly a where , where is an integer. Calculate all
other parameters according to the rules above. To test later whether an obtained witness
is within the interval the calculations described above for decommitment is used exchang-
ing with .

Example (commitment). Assume that we want to commit the interval . In this
case since the width of the interval is 10. The set will be all integer multiples of

and we randomly choose from this set. Since the lower end of the interval is

1 The witness is the value that is to be committed or the value that is compared with a committed value after
it has been transformed with a strong one-way function.

x
f C

c C∈ d x c–= c
d c x' x

f x' d– c
d

i i 10=
0…9 0 10…19 10→,→ g

i g i x,() i x i⁄=
x i

c C∈ C c C:ix∈∀{ }= x
x'

f g

234…243
i 10= C

10 c 410=

A Protection Scheme For Security Policies Using One-way Functions 11

and . is then committed using a strong
one-way function.

Example (decommitment). Assume that the commitment in the example above has been
made. Further assume that we want to find out if is with in the interval i.e .
We first calculate . By applying the function on

getting as the result. We then commit using the same strong one-way func-
tion as in the example above and compare the results.

5.4 The shortcomings of using fuzzy commitment.
The big disadvantage when using fuzzy commitment is that the error correction function
will give the codeword in the clear as output. With this value and the known value of the
variable d it is very easy to calculate the interval. The implications of this is that one lucky
guess will reveal the whole interval. This is a small problem if the set of possible values is
very large and the intervals are narrow since the probability of guessing a corest value is
very small and an exhaustive search is highly time consuming. However, in most “real
world” cases of specifying intervals for detection purposes the set of possible values will
be small and/or the intervals will be very wide. Therefore, the probability of a lucky guess
is high and it is relatively easy to perform an exhaustive search. In this light fuzzy commit-
ment by itself is not a perfect solution to the interval problem. In section 5.5 we discuss a
method to make it harder to do this deduction.

5.5 Making value deduction harder.
The possible input values to the one-way function are usually few enough to permit an
exhaustive search. This is basically due to the fact that we are dividing the input stream
into fields and separately applying the one-way function to each field, but also because we
in essence are dividing the possible values of the fields into equivalence classes and
thereby making it easier to find one input value that maps to a valid output value. Of
course, one could make the division of the data in such a way that the input fields would be
large enough. However, we believe that in most applications there are natural divisions
based on the format of log entries and other data structures in the system. The individual
fields in these structures usually have a small domain of possible input values, but the
combined structure in itself has a much larger domain. By applying the function repeat-
edly in a tree-like manner it should be possible to use the input domain of the structure as
the input domain of the resulting one-way function and still be able to handle variabilities
in the structure as previously discussed. The method works as follows:

1. Calculate the individual fields of the structure by applying an appropriate method, i.e a
one-way function on the fixed fields and a method for handling variability on the vari-

234 x 234= d x c– 234 410– 176–= = = c

240 x' 240=
c' x' d– 240 176–()– 416= = = g

416 410 410

12 A Protection Scheme For Security Policies Using One-way Functions

able fields. Please not that the method for handling variablility includes the application
of a one-way function.

2. Concatenate the resulting values pair-wise and apply a one-way function to each of the
pairs

3. Repeat step 2 until only one value remains. This is the value that is compared with the
policy.

The process above is graphically described in Figure 2. It could be generalized by always
applying the method for variablilty and restricting the variability for the fixed fields e.g
setting the intervall lenght to 1 if the fuzzy commitment approach is used.

Figure 2. Method one for handling variabilities

If all the fields in the structure are variable or if the structure is small the domain might
still be to small. However, it is, in any case, larger than the input domain of the individual
fields.

An alternative to the method described above could be the following:

1. Calculate the individual fields of the structure by applying an appropriate method (i.e a
one-way function on the fixed fields and a method for handling variability on the vari-

Fix Field 1 Var Filed 1 Fix Field 2 Fix Field 3 Fix Field 4Var Filed 2

~ # # #~

#

#

#

||

|||| ||

||

Resulting value

= One-way function
~ = Method for handling variability (incl. application of a one-way function)
|| = Concatenation

A Protection Scheme For Security Policies Using One-way Functions 13

able fields).

2. Concatenate all the resulting values and apply a one-way function to the concatenated
value.

This process is graphically described in Figure 3.

Figure 3. Method two for handling variabilities

The big difference between the first approach and the second approach, besides a reduc-
tion in the use of one way functions, is that the former can be used to do iterative match-
ing. Iterative matching in this case would be to try and find a match in the policy whenever
a one-way function is applied in Figure 2. Thus, matches could be found for individual
fields or groups of fields using the same general algorithm, i.e the matching algorithm
indicates a policy violation whenever a match is found in any level of the tree. By doing
this, and constructing the sequence of fields in an appropriate way, it would actually be
possible to leave out fields in some cases without explicitly stating this in the matching
algorithm.

The following example illustrates how the audit-logs in Table 1 on page 4 can be used
for detection and how variability is achieved. A template is constructed which will be used
for filling in information contained in the logs.

Fix Field 1 Var Field 1 Fix Field 2 Fix Field 3 Fix Field 4Var Field 2

~ # # #~

#

||

Resulting value

= One-way function
~ = Method for handling variability

|| = Concatenation
 (incl. application of a one-way function)

14 A Protection Scheme For Security Policies Using One-way Functions

Figure 4. Template for detecting remote login policy violations

In Figure 4. four fixed fields and two variable fields are used to encode an event for
remote login attempts. The service field contain the name of the service “sshd”. The first
three IP-address fields (A-C) contain fixed values for the subnet in which the IDS reside.
The variable IP-address field (D) contains the range of hosts for which remote login is a
policy violation. The last variable field, “Port Number” enables us to disallow login
attempts from certain portnumbers such as non-privileged ports (above 1024) on UNIX
systems. During the detection phase, the input events are encoded one by one using the
template and compared to the set of stored hash values indicating a policy violation.

6 Discussion and future work

There are a number of open questions regarding the protection of policies using one-way
functions. Below, we will discuss some of them and give indications of future work.

First, we have only discussed the protection of stateless policies, i.e. policies that only
takes the current event under consideration. We are fully aware that this presents a certain
limitation, but we do feel that the idea of this type of policy protection has a fundamental
value that is worth presenting. A more elaborated protection scheme for stateful policies
could be used to describe more complex threats and attacks and we are indeed in the proc-
ess of carrying through the work to develop such a scheme.

Second, we have discussed the need to handle variability and suggested solutions on
how to handle intervals but not on how to handle general variables. In order to solve that
problem we would probably need a strong cryptographic one-way hash function that
generically and controllably would hash different values to one hash value. Basically this
function needs to divide the possible values of the variable into equivalence classes based
on the values that we are interested in and then hash the individual members of each

Service IP Addr. A IP Addr. B IP Addr. C Port NumberIP Addr. D

~~

#

||

Resulting value

= One-way function
~ = Method for handling variability

|| = Concatenation
 (incl. application of a one-way function)

A Protection Scheme For Security Policies Using One-way Functions 15

equivalence class into one hash value. In order to be generic this function must be able to
take the relation that defines the equivalence classes as a parameter and it must be possible
to define arbitrary relations without giving the individual values. We do not know of such
a function, neither do we know if it is possible to construct it. There are collisionful one-
way hash-functions described in the literature e.g. [6, 1, 2]. However, they do not solve the
problem discussed above.

Finally, there is the question of performance. Some of the systems, e.g. IDSs in large
computer systems or firewalls in high capacity networks, need to be able to handle large
amounts of information in a limited time. The performance of an IDS described in this
paper is likely to be significantly lower than a traditional signature-based intrusion detec-
tion system. We do not claim this scheme to be efficient, but instead focus on confidential-
ity properties and the feasibility to protect the policy from unauthorized disclosure. In a
real-life system, traditional signature detection techniques could be used to detection well-
known attacks and complemented using this technique for attacks that are target specific.
This would limit the decrease in performance to a minimum.

7 Conclusion

This paper discusses the problem of protecting the security policy of a security mecha-
nism, such as an intrusion detection system or a firewall operating distributed or ubiqui-
tous environents. We have stated that the policy contains sensitive information that could
be misused by an attacker in order to avoid detection or to render the detection system use-
less. Still worse, it could provide information that would facilitate intrusions into the target
system or even extend to logically connected systems within or outside of the actual net-
work. Therefore, the policy is crucial for the function of the security mechanism and the
system it is supposed to protect.

We have suggested that one-way functions could be used as a means to protect the pol-
icy. However, this approach has certain shortcomings. Foremost of these is the fact that
normal one-way function schemes can only be used on constant values, so that even small
variations in input values give totally different output values. This is a desirable property
for the ordinary use of one-way functions. In our case, however, we would like for a com-
plete equivalence class of data to be hashed into one specific hash value and we have sug-
gested a clustering method based on fuzzy commitment that would accomplish this for
some, but not all, types of variability in the input data.

The drawback of clustering is that it increases the probability of guessing a correct
match or performing an exhaustive search. It is also a fact that the very nature of events
such as intrusions puts a bound on the possible cases, thereby making it easier to make a
good guess. To counter this we have suggested a method that expands the possible domain

16 A Protection Scheme For Security Policies Using One-way Functions

by grouping values together and repeatedly applying one-way functions in a tree-like man-
ner, thereby making guessing and exhausitve searches more difficult.

References

1. S.Bakhtiari, R. Safavi-Naini and J. Pieprzyk. On the Weakness of Gong´s Collisionful
Hash Function. Journal of Universal Computer Science, vol 3, no.3, pp 185-196,
Springer Pub. Co, 1997.

2. S.Bakhtiari, R. Safavi-Naini and J. Pieprzyk. On Selectable Collisionful Hash Func-
tions. The Australian Conference on Information Security and Privacy, LNCS No.
1172, pp 287-292, Springer Pub. Co., 1996.

3. D.B. Chapman and E.D. Zwicky. Building Internet Firewall. O’Reilly & Associates,
Inc. September, 1995.

4. W.R. Cheswick and S.M. Bellovin. Firewalls and Internet Security: Repelling the Wily
Hacker. Addison-Wesley. 1994.

5. D.C. Fieldmeier and P.R. Karn. UNIX password security - ten years later. Advances
in Cryptology CRYPTO 89, LNCS 0302-9743; 435 pp:44-63, Springer cop., 1990.

6. L. Gong. Collisionful keyed hash functions with selectable collisions. Information
Processing Letters 55, pp 167-170, Elsevier, 1995.

7. H. Hedbom, H. Kvarnström, E. Jonsson. Security Implications of Distributed Intrusion
Detection Architectures, In Proceedings of the 4th Nordic Workshop on Secure IT sys-
tems - Nordsec 99, pages 225-243; Stockholm, Sweden.

8. H. Hedbom, S. Lindskog, E. Jonsson. Risks and Dangers of Security Extensions. In
Proceedings of IFIP Working Conference on Security and Control of IT in Society-II,
SCITS-II, Bratislava, Slovakia, June 15-16, 2001. To appear

9. A. Juels and M. Wattenberg. A Fuzzy Commitmen Scheme. In Proceedings of the sec-
ond ACM conferens on computer and communication security CCS´99. Singapore,
1999.

10. R. Morris and K. Thompson. Password security: A case history. Communications of
the ACM, 22(11):594-597, November 1979.

11. P.G. Neumann, “Architectures and formal representations for secure systems”, Final
Report; SRI Project 6401; Deliverable A002, 1995.

12. Next-generation Intrusion Detection Expert System (NIDES) - A Summary, SRI,
Computer Science Laboratory, 1995.

13. S. Northcutt. Network Intrusion Detection : An Analyst’s Handbook. New Riders.
1999.

A Protection Scheme For Security Policies Using One-way Functions 17

14. A. Shamir, Nico van Someren, “Playing hide and seek with stored keys”, Weizmann
Institute of Science, Israel; nCipher Corporation Limited, England, 1998

15. T. H. Ptacek, T. N. Newsham, “Insertion, Evasion, and Denial of Service: Eluding Net-
work Intrusion Detection”, Secure Networks, Inc.

16. S Staniford-Chen, B Tung, P Porras, Cliff Kahn, D Schnackenberg, R Feiertag, M
Stillman, The Common Intrusion Detection Framework - Data Formats, Internet Draft,
September, 1998.

18 A Protection Scheme For Security Policies Using One-way Functions

